找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Applied Mathematics and Approximation Theory; Contributions from A George A. Anastassiou,Oktay Duman Conference proceedings 201

[復制鏈接]
樓主: affront
31#
發(fā)表于 2025-3-26 21:26:44 | 只看該作者
,Solving Second-Order Discrete Sturm–Liouville BVP Using Matrix Pencils,ing three metallic materials have been qualified to be available as implant materials, i.e. Fe-Cr-Ni, Co-Cr and Ti-Al-V [2]. However, shape memory alloys have been recently introduced to medicine, since they have unique functions such as shape memory effect, superelasticity and damping capacity.
32#
發(fā)表于 2025-3-27 02:48:49 | 只看該作者
33#
發(fā)表于 2025-3-27 08:39:58 | 只看該作者
34#
發(fā)表于 2025-3-27 09:52:23 | 只看該作者
,Extension of Karmarkar’s Algorithm for Solving an Optimization Problem,-preserving - proximation by real or complex polynomials in one or several variables. Chapter 5 is an exception and is devoted to some related important but n- polynomial andnonsplineapproximations preservingshape.Thesplinecaseis completely excluded in the present book, since on the one hand, many d
35#
發(fā)表于 2025-3-27 13:44:18 | 只看該作者
The Construction of Particular Solutions of the Nonlinear Equation of Schrodinger Type,y held by both teachers and students. The influence of subject subcultures and communities of practice will be discussed in terms of defining and operationalising technological concepts and processes. Technological concepts are not consistently defined in the literature. For students to undertake te
36#
發(fā)表于 2025-3-27 18:46:56 | 只看該作者
George A. Anastassiou,Oktay DumanContributions from the only conference to bring together researchers from applied mathematics and approximation theory.Featuring clearly presented and unique contributions of the most recent advances
37#
發(fā)表于 2025-3-28 01:29:29 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:05 | 只看該作者
39#
發(fā)表于 2025-3-28 10:08:43 | 只看該作者
40#
發(fā)表于 2025-3-28 13:31:27 | 只看該作者
https://doi.org/10.1007/978-3-540-75238-7tion, and study its fundamental properties. We also present the fractional hypergeometric matrix function as a solution of the matrix generalization of the fractional Gauss differential equation. Some special cases are discussed.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 14:53
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
惠安县| 桦川县| 大悟县| 杂多县| 花莲市| 开鲁县| 昂仁县| 漾濞| 务川| 资兴市| 邯郸县| 山东省| 凉山| 浏阳市| 铜川市| 临颍县| 稷山县| 瑞丽市| 东至县| 蒙山县| 肇源县| 太白县| 青冈县| 六盘水市| 新兴县| 武陟县| 蒲城县| 石首市| 佛学| 民县| 亚东县| 浦江县| 德昌县| 河北区| 嘉荫县| 闽侯县| 宜宾县| 广灵县| 新干县| 泸州市| 朔州市|