找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Methods for Geometric Modeling and Numerical Simulation; Carlotta Giannelli,Hendrik Speleers Book 2019 Springer Nature Switzerlan

[復制鏈接]
樓主: 哥哥大傻瓜
21#
發(fā)表于 2025-3-25 05:12:04 | 只看該作者
https://doi.org/10.1007/978-3-642-55983-9 counterpart of the IGA method, so that the search for efficient quadrature is an active research topic. The focus of the first part is on a brief survey on the contributions available for the reduction of computational costs for such issue. We review the generalized Gaussian strategies and the redu
22#
發(fā)表于 2025-3-25 09:07:13 | 只看該作者
23#
發(fā)表于 2025-3-25 11:46:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:01 | 只看該作者
Stefan Zachow,Thomas Hierl,Bodo Erdmannns arising in the isogeometric formulation of the Galerkin Boundary Element Method (BEM). In the first scheme, the regular part of the integrand, consisting of a B-spline and of an auxiliary function, is approximated by a suitable quasi-interpolant spline. In the second scheme, the auxiliary functio
25#
發(fā)表于 2025-3-25 20:44:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:40:43 | 只看該作者
Marc Hensel,Thomas Pralow,Rolf-Rainer Grigatlization of polynomial splines and can be represented in terms of an interesting set of basis functions, the so-called ., which generalize the standard polynomial B-splines. We provide an accessible and self-contained exposition of Tchebycheffian B-splines and their main properties. Our construction
27#
發(fā)表于 2025-3-26 08:11:16 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:39 | 只看該作者
Quadrature Rules in the Isogeometric Galerkin Method: State of the Art and an Introduction to Weigh978-3-662-56649-7
29#
發(fā)表于 2025-3-26 15:47:56 | 只看該作者
Eigenvalue Isogeometric Approximations Based on B-Splines: Tools and Results,978-3-642-33495-5
30#
發(fā)表于 2025-3-26 20:12:07 | 只看該作者
A Study on Spline Quasi-interpolation Based Quadrature Rules for the Isogeometric Galerkin BEM,978-3-662-65002-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
杭锦旗| 三穗县| 灵武市| 青州市| 沐川县| 鄂州市| 铜陵市| 玉树县| 江陵县| 星子县| 东宁县| 墨玉县| 平安县| 新泰市| 睢宁县| 浙江省| 会东县| 从江县| 柯坪县| 武穴市| 尚义县| 呼图壁县| 郧西县| 日照市| 吉安市| 兴仁县| 海原县| 忻州市| 裕民县| 新建县| 沅陵县| 体育| 张家港市| 大丰市| 江陵县| 汉川市| 漯河市| 孟连| 远安县| 新丰县| 武威市|