找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Intelligent Computing Technology and Applications; 19th International C De-Shuang Huang,Prashan Premaratne,Abir Hussain Conference

[復(fù)制鏈接]
樓主: cherub
31#
發(fā)表于 2025-3-26 21:23:22 | 只看該作者
Neferti X. M. Tadiar,Angela Y. Davisr time. Online data-stream outlier detection can indeed be more difficult and challenging. This is because new data points are continuously arriving, and the outlier detection algorithm must process them in real-time. Our idea is to use online evolving spiking neural network classifier and dynamic o
32#
發(fā)表于 2025-3-27 01:52:43 | 只看該作者
https://doi.org/10.1007/978-1-4039-8261-2r system. With the development of social production, the electricity consumption in people’s daily life, factories and enterprises is continuously increasing, it also increases the difficulty of electric load forecasting. Traditional methods are difficult to analyze the huge and complex electricity
33#
發(fā)表于 2025-3-27 08:38:37 | 只看該作者
34#
發(fā)表于 2025-3-27 11:10:03 | 只看該作者
https://doi.org/10.1007/978-1-4039-8261-2f cancer can be predicted by analyzing lncRNAs. However, lncRNA is characterized by a limited amount of data samples and a large number of expression levels of gene features, where there exist much redundancy. It results in difficulty in cancer predicting. To solve the problem, this paper proposes a
35#
發(fā)表于 2025-3-27 15:28:39 | 只看該作者
https://doi.org/10.1007/978-1-4039-8261-2 propose a new algorithm based on the manifold tangent space, called the manifold tangent space-based 2D-DLPP algorithm. This algorithm embeds the covariance matrix into the tangent space of the SPD manifold and utilizes Log-Euclidean Metric Learning (LEM) to fully extract feature information, thus
36#
發(fā)表于 2025-3-27 19:13:23 | 只看該作者
Advanced Intelligent Computing Technology and Applications978-981-99-4752-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
37#
發(fā)表于 2025-3-27 23:19:44 | 只看該作者
https://doi.org/10.1007/978-981-99-4752-2Evolutionary Computation and Learning; Swarm Intelligence and Optimization; Information Security; Theor
38#
發(fā)表于 2025-3-28 05:52:22 | 只看該作者
39#
發(fā)表于 2025-3-28 06:19:58 | 只看該作者
40#
發(fā)表于 2025-3-28 12:26:19 | 只看該作者
https://doi.org/10.1007/978-1-4039-8261-2er fit the non-convex distribution of data (MKTL, Multi-core K-means Transfer Learning). The experimental results show that MKTL achieves the best average accuracy in 3 datasets. Compared with the original methods (kNN, TCA, GFK, JDA), the performance of MKTL is improved by 2.5?~?12.8 percentage in high computational efficiency.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 商南县| 城市| 桦甸市| 陆川县| 精河县| 安溪县| 澄迈县| 绥化市| 昌吉市| 马尔康县| 景洪市| 罗定市| 东阳市| 那曲县| 平阳县| 千阳县| 无为县| 桐梓县| 乌审旗| 安丘市| 南木林县| 弋阳县| 中江县| 特克斯县| 叶城县| 承德县| 肇东市| 成武县| 会泽县| 吴堡县| 黔西| 鲜城| 拜城县| 景谷| 拉孜县| 商河县| 西华县| 洞口县| 彭山县| 哈密市|