找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Data Mining and Applications; 19th International C Xiaochun Yang,Heru Suhartanto,Ningning Cui Conference proceedings 2023 The Edit

[復(fù)制鏈接]
樓主: charter
21#
發(fā)表于 2025-3-25 06:11:54 | 只看該作者
978-3-031-46673-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 09:13:20 | 只看該作者
23#
發(fā)表于 2025-3-25 14:46:53 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/145483.jpg
24#
發(fā)表于 2025-3-25 16:37:35 | 只看該作者
https://doi.org/10.1007/978-3-662-02091-3n for teaching evaluation (SL-TeaE). We expand a general basic sentiment lexicon based on teaching evaluation data from our university’s academic system by creating a list of adverbs of degree and negative words. We use the TextRank algorithm to select sentiment seed words from user data and the SO-
25#
發(fā)表于 2025-3-25 23:44:22 | 只看該作者
https://doi.org/10.1007/978-3-662-02091-3ased on a pre-trained model ignores the syntactic relations in the text and associations between different data; however, these relations can provide crucial missing auxiliary information for the MNER task. Therefore, we propose an auxiliary and syntactic relation enhancement graph fusion (ASGF) met
26#
發(fā)表于 2025-3-26 01:20:42 | 只看該作者
https://doi.org/10.1007/978-3-662-02091-3ds first are identified from sentences and then utilized to categorize event types. However, this classification hugely relies on a substantial amount of annotated trigger words along with the accuracy of the trigger identification process. This annotation of trigger words is labor-intensive and tim
27#
發(fā)表于 2025-3-26 05:08:34 | 只看該作者
https://doi.org/10.1007/978-3-662-02091-3asoning abilities, the challenging logical reasoning tasks are proposed. Existing approaches use graph-based neural models based on either sentence-level or entity-level graph construction methods which designed to capture a logical structure and enable inference over it. However, sentence-level met
28#
發(fā)表于 2025-3-26 11:30:20 | 只看該作者
https://doi.org/10.1007/978-3-662-02091-3sed on textual data using only a limited number of labeled examples for training. Recently, quite a few studies have proposed to handle this task with task-agnostic and task-specific weights, among which prototype networks have proven to achieve the best performance. However, these methods often suf
29#
發(fā)表于 2025-3-26 15:37:12 | 只看該作者
30#
發(fā)表于 2025-3-26 19:24:35 | 只看該作者
Berliner Klinische Antrittsvorlesungenge of emotional causes. Existing approaches focus on solving explicit sentiment, but struggle with analyzing implicit sentiment reviews. In this paper, to address the issue, we propose SI-TS, a framework that takes implicit sentiment extraction into account. Specifically, we design target structure
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威宁| 江城| 八宿县| 东乌| 两当县| 赫章县| 西乡县| 永安市| 永州市| 嫩江县| 韶山市| 铅山县| 垣曲县| 常州市| 广安市| 稷山县| 大名县| 沂南县| 资阳市| 惠东县| 庆阳市| 吴桥县| 柳江县| 托里县| 额济纳旗| 凤庆县| 和政县| 东乡族自治县| 三穗县| 吉隆县| 平利县| 于田县| 杭锦后旗| 安义县| 松滋市| 全南县| 吐鲁番市| 永登县| 尉犁县| 应用必备| 樟树市|