找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Data Mining and Applications; 9th International Co Hiroshi Motoda,Zhaohui Wu,Wei Wang Conference proceedings 2013 Springer-Verlag

[復(fù)制鏈接]
樓主: malcontented
31#
發(fā)表于 2025-3-26 21:15:31 | 只看該作者
Berichte zur Lebensmittelsicherheit 2008o large scale data sets because it needs O(..) computational operations to process a data set of . data points[1]. Based on the minimization of the increment of distortion, we tackle this problem by developing a novel efficient growing vector quantization method to preprocess a large scale data set,
32#
發(fā)表于 2025-3-27 02:20:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:02:38 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:41 | 只看該作者
35#
發(fā)表于 2025-3-27 14:32:58 | 只看該作者
Berichte zur Lebensmittelsicherheit 2008e databases. One of those approaches, the DARA algorithm, is designed to transform data stored in relational databases into a vector space representation utilising information retrieval theory. The DARA algorithm has shown to produce improvements over other state-of-the-art approaches. However, the
36#
發(fā)表于 2025-3-27 19:13:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:20:19 | 只看該作者
https://doi.org/10.1007/978-3-0346-0205-1datable by inserting new transactions and it provides efficient querying and updating algorithms. However, an important limitation of the IT structure, concerning scalability, is that it consumes a large amount of memory. In this paper, we address this limitation by proposing an improved data struct
38#
發(fā)表于 2025-3-28 03:26:30 | 只看該作者
39#
發(fā)表于 2025-3-28 07:09:18 | 只看該作者
Berichte zur Lebensmittelsicherheit 2008nal (e.g., human) intervention. A .-dominating set in a distributed system is a set of processors such that each processor outside the set has at least . neighbors in the set. In the past, a few self-stabilizing algorithms for minimal .-dominating set (MKDS) have been obtained. However, the presente
40#
發(fā)表于 2025-3-28 13:55:14 | 只看該作者
Berichte zur Lebensmittelsicherheit 2008when the data sets are imbalanced, the probability of rare event is underestimated in the use of traditional logistic regression. With data explosion in recent years, some researchers propose large scale logistic regression which still fails to consider the rare event, therefore, there exists bias w
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盱眙县| 通江县| 桃源县| 渭南市| 黎川县| 山阴县| 井冈山市| 云阳县| 富平县| 监利县| 孝昌县| 射阳县| 平塘县| 贵溪市| 奈曼旗| 安顺市| 济宁市| 陇西县| 莫力| 电白县| 阜新市| 大英县| 江西省| 裕民县| 汨罗市| 阿合奇县| 鲁山县| 青铜峡市| 浦县| 河北省| 阳江市| 龙里县| 岳普湖县| 南召县| 仪陇县| 南投县| 饶平县| 南川市| 吉木乃县| 当涂县| 汝南县|