找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Computing; 12th International C Deepak Garg,V. A. Narayana,Suneet Kumar Gupta Conference proceedings 2023 Springer Nature Switzerl

[復(fù)制鏈接]
樓主: 動詞
51#
發(fā)表于 2025-3-30 08:39:07 | 只看該作者
52#
發(fā)表于 2025-3-30 16:26:17 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:45 | 只看該作者
https://doi.org/10.1007/978-3-663-14484-7ectral clustering from which the optimal l eigen values are identified as optimal cluster centers for imputation. The imputation is done using this reduced optimal non-missing dataset. The imputed dataset is evaluated by comparing the accuracies of classifiers like SVM, C4.5, NB and kNN. Proposed me
54#
發(fā)表于 2025-3-30 20:46:01 | 只看該作者
Wohlfahrtsma?e für ein WirtschaftssubjektThe DR-A-LSTM model was compared with the simple LSTM and PCA-LSTM models to predict landslide movements. The data was split in the 80:20 ratio to train and test the ML models. The simple LSTM model produced 82.3% accuracy in the training data and 71.8% in the testing data. The simple LSTM model sho
55#
發(fā)表于 2025-3-31 01:43:53 | 只看該作者
Wohlfahrtsma?e für ein Wirtschaftssubjekts Independent Component Analysis and Principal Component Analysis to accomplish the above task. In addition to being more accurate than the state-of-the-art, the proposed model yields an accuracy of 87% with only 714 features.
56#
發(fā)表于 2025-3-31 08:48:19 | 只看該作者
Hickssche Ma?e und Paretokriteriumst with 0.012 RMSE, and the univariate MLP was the second-best model with 0.013 RMSE. The analysis of the results shows that ensemble MLP is a promising method that can be used for landslide prediction using movement data.
57#
發(fā)表于 2025-3-31 12:39:42 | 只看該作者
https://doi.org/10.1007/978-3-642-83272-7hod or tools for founding outliers in the data set, outlier affects the mean, variance and standard deviation, outliers are reducing the power of statistical tests, they can decrease normality of data set. In this paper we used hierarchical clustering technique to find out the global outlier. In hie
58#
發(fā)表于 2025-3-31 13:20:14 | 只看該作者
Wohlfahrtsma?e für ein Wirtschaftssubjekt proposed method was compared with other state-of-the-art techniques in unsupervised learning for categorical data such as: k-means, Mkm-nof, weighted dissimilarity, Mkm-ndm and structure-based clustering (SBC) algorithms; evaluated the accuracy (AC), adjusted rand index (ARI) and normalized mutual
59#
發(fā)表于 2025-3-31 19:22:56 | 只看該作者
Studies in Contemporary Economicsrs, and an output layer. The proposed DNN model with the same hyperparameters values performed well over the CICDDoS 2019 and PVAMUDDoS-2020 datasets with all features and reduced features. The results are comparable in both cases and the evaluation with reduced features shows less training and test
60#
發(fā)表于 2025-4-1 00:17:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江油市| 达拉特旗| 西安市| 藁城市| 理塘县| 定结县| 繁峙县| 榕江县| 竹溪县| 集安市| 南木林县| 金川县| 江川县| 淮滨县| 通城县| 广昌县| 越西县| 南康市| 屯门区| 龙门县| 方正县| 砚山县| 昭觉县| 资中县| 斗六市| 南通市| 绵阳市| 通许县| 安塞县| 桂阳县| 古浪县| 阿鲁科尔沁旗| 三门县| 黄平县| 电白县| 正阳县| 东安县| 阿图什市| 德庆县| 石狮市| 灵川县|