找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Adaptive Dynamic Programming: Single and Multiple Controllers; Ruizhuo Song,Qinglai Wei,Qing Li Book 2019 Science Press, Beijing and Sprin

[復制鏈接]
樓主: 拼圖游戲
31#
發(fā)表于 2025-3-27 00:44:47 | 只看該作者
https://doi.org/10.1007/978-981-13-1712-5Optimal control; Multi-player games; Adaptive dynamic programming; Nonlinear systems; Neural network-bas
32#
發(fā)表于 2025-3-27 04:17:07 | 只看該作者
33#
發(fā)表于 2025-3-27 06:22:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:46 | 只看該作者
35#
發(fā)表于 2025-3-27 16:48:45 | 只看該作者
https://doi.org/10.1007/978-3-031-46375-4he weighted sum technology, the original multi-objective optimal control problem is transformed to the single one. An ADP method is established for nonlinear time-delay systems to solve the optimal control problem. To demonstrate the presented iterative performance index function sequence is converg
36#
發(fā)表于 2025-3-27 21:13:06 | 只看該作者
https://doi.org/10.1007/978-3-031-46375-4tuation, this chapter proposes multiple actor-critic structures to obtain the optimal control via input-output data for unknown nonlinear systems. The shunting inhibitory artificial neural network (SIANN) is used to classify the input-output data into one of several categories. Different performance
37#
發(fā)表于 2025-3-28 00:38:59 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:04 | 只看該作者
Polyphony: Authorship and Power,obi–Bellman (HJB) equation. Off-policy learning allows the iterative performance index and iterative control to be obtained by completely unknown dynamics. Critic and action networks are used to get the iterative control and iterative performance index, which execute policy evaluation and policy imp
39#
發(fā)表于 2025-3-28 06:18:39 | 只看該作者
Lakshmi Bandlamudi,E. V. Ramakrishnangorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index fu
40#
發(fā)表于 2025-3-28 14:23:37 | 只看該作者
Bakhtinian Explorations of Indian Cultureing (IRL) algorithm is presented to obtain the iterative control. Off-policy learning is used to allow the dynamics to be completely unknown. Neural networks (NN) are used to construct critic and action networks. It is shown that if there are unknown disturbances, off-policy IRL may not converge or
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天祝| 岗巴县| 精河县| 延庆县| 隆昌县| 安塞县| 嘉义县| 宣威市| 承德市| 伊川县| 姚安县| 株洲市| 潜江市| 莱芜市| 东明县| 庆安县| 凭祥市| 昆山市| 石首市| 泰州市| 芷江| 万州区| 砀山县| 原平市| 万山特区| 大竹县| 徐州市| 德格县| 疏勒县| 治县。| 从江县| 安远县| 堆龙德庆县| 抚顺市| 江油市| 循化| 边坝县| 南丰县| 新蔡县| 石泉县| 岳普湖县|