找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties over the Complex Numbers; A Graduate Course Herbert Lange Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: 延展
11#
發(fā)表于 2025-3-23 10:22:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:04:40 | 只看該作者
,Materialanalysen der Fundgegenst?nde,riety, its .. As we mentioned already in the introduction, the theory of abelian varieties originated with the investigation of Jacobians. They are not only the most important, but also the best-known examples of abelian varieties. Much more can be said about them than about a general principally po
13#
發(fā)表于 2025-3-23 18:07:38 | 只看該作者
14#
發(fā)表于 2025-3-24 01:50:31 | 只看該作者
Abelian Varieties over the Complex Numbers978-3-031-25570-0Series ISSN 1618-2685 Series E-ISSN 2627-5260
15#
發(fā)表于 2025-3-24 02:53:07 | 只看該作者
https://doi.org/10.1007/978-3-663-01432-4he notion “moduli space” is considered in a slightly naive way: A . means a complex analytic space whose points are in some natural one to one correspondence with the elements of the set. In many case we show that the spaces are manifolds or algebraic varieties. The uniqueness and the functorial properties of these spaces will be totally ignored.
16#
發(fā)表于 2025-3-24 10:24:46 | 只看該作者
,Isotopenanalysen in der Arch?ometrie, the fact that the Chow group Ch(.) admits two ring structures, one is induced by the intersection product and the other by the Pontryagin product. The Fourier transform exchanges both ring structures. In the second section we give an introduction into the theory of algebraic cycles on abelian varieties.
17#
發(fā)表于 2025-3-24 11:25:06 | 只看該作者
18#
發(fā)表于 2025-3-24 18:47:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:55:06 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:24 | 只看該作者
978-3-031-25569-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 09:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 沾化县| 兴国县| 施秉县| 鲜城| 灵宝市| 郸城县| 临洮县| 定南县| 中宁县| 巧家县| 郎溪县| 策勒县| 耿马| 德保县| 芮城县| 文山县| 舟山市| 阜新| 利川市| 枣强县| 墨竹工卡县| 青州市| 望都县| 临颍县| 丰顺县| 遵化市| 长葛市| 中方县| 正安县| 靖远县| 乐昌市| 贵定县| 霍林郭勒市| 通河县| 宜章县| 汉源县| 囊谦县| 阿拉善左旗| 革吉县| 博乐市|