找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties; Serge Lang Textbook 1983 Springer-Verlag New York Inc. 1983 Abelian variety.Abelsche Variet?t.Varieties.algebra.homomor

[復制鏈接]
樓主: 脾氣好
11#
發(fā)表于 2025-3-23 09:42:42 | 只看該作者
http://image.papertrans.cn/a/image/143134.jpg
12#
發(fā)表于 2025-3-23 17:03:19 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:58 | 只看該作者
Oliver Schütze,Carlos Hernándezy properties of algebraic groups, and we shall not need structure theorems, for instance. All the results which we shall need are stated explicitly below. We give no proofs in § 1. Granting IAG, a complete self-contained exposition can be found in the papers of Weil and Rosenlicht.
14#
發(fā)表于 2025-3-23 22:46:53 | 只看該作者
Oliver Schütze,Carlos HernándezAn . is a group variety, which, as a variety, is complete. In the classical case, it is not difficult to show that topologically an abelian variety is a complex torus.
15#
發(fā)表于 2025-3-24 02:28:49 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:39 | 只看該作者
https://doi.org/10.1007/978-3-322-88139-7In the last chapter we defined various equivalence relations, and we shall now determine the structure of the factor groups for these equivalence relations in the group of divisors of an abelian variety A. We have inclusions
17#
發(fā)表于 2025-3-24 14:38:29 | 只看該作者
https://doi.org/10.1007/978-3-658-23456-0We first define the transpose of a homomorphism, i.e., the contravariant mapping induced on the Picard varieties. We prove that the transpose of an exact sequence (up to isogenies) is exact (up to isogenies).
18#
發(fā)表于 2025-3-24 18:21:56 | 只看該作者
https://doi.org/10.1007/978-3-663-02318-0In this chapter we exploit the fact that for . prime to the characteristic there exist exactly . points of order . on an abelian variety . of dimension ..
19#
發(fā)表于 2025-3-24 22:31:18 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-8534-7Abelian variety; Abelsche Variet?t; Varieties; algebra; homomorphism
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-23 07:34
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
成武县| 绵竹市| 赣榆县| 荆门市| 秦安县| 蛟河市| 黄山市| 方山县| 长丰县| 上饶市| 南充市| 金塔县| 肥东县| 白玉县| 城市| 白朗县| 九寨沟县| 曲靖市| 峡江县| 内江市| 亚东县| 正定县| 高要市| 青浦区| 福泉市| 城步| 安庆市| 平南县| 海晏县| 陵川县| 灌南县| 北安市| 阜阳市| 呼玛县| 宜章县| 贵定县| 安阳县| 连城县| 来安县| 鄂伦春自治旗| 台山市|