找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Abelian Varieties; Serge Lang Textbook 1983 Springer-Verlag New York Inc. 1983 Abelian variety.Abelsche Variet?t.Varieties.algebra.homomor

[復(fù)制鏈接]
樓主: 脾氣好
11#
發(fā)表于 2025-3-23 09:42:42 | 只看該作者
http://image.papertrans.cn/a/image/143134.jpg
12#
發(fā)表于 2025-3-23 17:03:19 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:58 | 只看該作者
Oliver Schütze,Carlos Hernándezy properties of algebraic groups, and we shall not need structure theorems, for instance. All the results which we shall need are stated explicitly below. We give no proofs in § 1. Granting IAG, a complete self-contained exposition can be found in the papers of Weil and Rosenlicht.
14#
發(fā)表于 2025-3-23 22:46:53 | 只看該作者
Oliver Schütze,Carlos HernándezAn . is a group variety, which, as a variety, is complete. In the classical case, it is not difficult to show that topologically an abelian variety is a complex torus.
15#
發(fā)表于 2025-3-24 02:28:49 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:39 | 只看該作者
https://doi.org/10.1007/978-3-322-88139-7In the last chapter we defined various equivalence relations, and we shall now determine the structure of the factor groups for these equivalence relations in the group of divisors of an abelian variety A. We have inclusions
17#
發(fā)表于 2025-3-24 14:38:29 | 只看該作者
https://doi.org/10.1007/978-3-658-23456-0We first define the transpose of a homomorphism, i.e., the contravariant mapping induced on the Picard varieties. We prove that the transpose of an exact sequence (up to isogenies) is exact (up to isogenies).
18#
發(fā)表于 2025-3-24 18:21:56 | 只看該作者
https://doi.org/10.1007/978-3-663-02318-0In this chapter we exploit the fact that for . prime to the characteristic there exist exactly . points of order . on an abelian variety . of dimension ..
19#
發(fā)表于 2025-3-24 22:31:18 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-8534-7Abelian variety; Abelsche Variet?t; Varieties; algebra; homomorphism
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵武市| 太湖县| 新宾| 黔西县| 富宁县| 莲花县| 张家口市| 横山县| 沽源县| 博白县| 黄浦区| 贵州省| 开平市| 三河市| 荣成市| 墨玉县| 双牌县| 屯门区| 来安县| 台湾省| 库车县| 绥德县| 保亭| 虹口区| 常德市| 兖州市| 卓资县| 宁明县| 勐海县| 景洪市| 沈丘县| 应城市| 莱州市| 沅江市| 集贤县| 尚义县| 兴义市| 揭西县| 醴陵市| 石城县| 台前县|