找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Variational Theory of Convolution-Type Functionals; Roberto Alicandro,Nadia Ansini,Antonio Tribuzio Book 2023 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: Conformist
31#
發(fā)表于 2025-3-26 22:21:24 | 只看該作者
Roberto Alicandro,Nadia Ansini,Antonio TribuzioGives an abstract framework for a comprehensive theory of convolution-type functionals.Provides an environment and technical tools to frame problems related to multiple-scale variational models.Introd
32#
發(fā)表于 2025-3-27 02:49:08 | 只看該作者
SpringerBriefs on PDEs and Data Sciencehttp://image.papertrans.cn/a/image/142565.jpg
33#
發(fā)表于 2025-3-27 06:40:05 | 只看該作者
Chemotherapeutica zur lokalen AnwendungIn this chapter we formalize the assumptions on our families of convolution-type functionals. Such assumptions are stated in terms of some growth and integrability conditions. We explain and comment these hypotheses comparing them with the corresponding assumptions for families of local integral functionals commonly used in the literature.
34#
發(fā)表于 2025-3-27 11:17:25 | 只看該作者
Antioxidants/Antimutagens in FoodsThe main result of this chapter is a compactness and integral-representation result for the Γ-limits of the families {.(?, .)}., which we can obtain through a convolution version of the localization method of Γ-convergence. A key point is that it is possible to limit the analysis to finite-range convolutions through a truncation argument.
35#
發(fā)表于 2025-3-27 14:11:05 | 只看該作者
36#
發(fā)表于 2025-3-27 21:22:30 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:37 | 只看該作者
38#
發(fā)表于 2025-3-28 04:04:12 | 只看該作者
39#
發(fā)表于 2025-3-28 07:35:57 | 只看該作者
M. Nagao,K. Wakabayashi,Y. Suwa,T. Kobayashis. The limit energy density is characterized by an asymptotic nonlocal homogenization formula, which reduces to a non-local cell-problem formula when the energy density is convex in the last variable. In the case of homogeneous integrands the homogenization formula simplify only in the convex case.
40#
發(fā)表于 2025-3-28 14:19:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 达日县| 保康县| 武穴市| 澄城县| 临漳县| 马龙县| 奉新县| 广宁县| 车致| 枣阳市| 康保县| 新巴尔虎左旗| 高尔夫| 都兰县| 深水埗区| 黄梅县| 朝阳区| 建阳市| 新龙县| 平湖市| 榆林市| 呼伦贝尔市| 建阳市| 黄石市| 双柏县| 阿合奇县| 西城区| 卢龙县| 鄄城县| 阳新县| 武穴市| 金山区| 永福县| 灵台县| 元氏县| 高阳县| 大埔区| 鄂托克旗| 江北区| 柞水县|