找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Road to Randomness in Physical Systems; Eduardo M. R. A. Engel Book 1992 Springer-Verlag Berlin Heidelberg 1992 Generator.Mathematica.Ra

[復(fù)制鏈接]
樓主: ergonomics
21#
發(fā)表于 2025-3-25 07:17:30 | 只看該作者
22#
發(fā)表于 2025-3-25 07:56:08 | 只看該作者
23#
發(fā)表于 2025-3-25 12:27:03 | 只看該作者
Ronald C. Blakey,Wayne D. Ranneythe “..” This chapter deals with the general case, that is, given an n dimensional random vector X and a collection of n by n matrices, .(.); . ∈ . ? IR, attention is focused on conditions under which (.(.).)(mod 1) converges to a distribution uniform on the unit hypercube, ., as . tends to infinity.
24#
發(fā)表于 2025-3-25 19:12:50 | 只看該作者
Bivalvia in Ancient Hydrocarbon SeepsThere are many ways of introducing the concept of probability in classical, i.e. deterministic physics. This work is concerned with one approach, known as “the method of arbitrary functions.” To illustrate it consider the following example:
25#
發(fā)表于 2025-3-25 22:59:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:44:44 | 只看該作者
27#
發(fā)表于 2025-3-26 06:57:04 | 只看該作者
28#
發(fā)表于 2025-3-26 09:07:42 | 只看該作者
https://doi.org/10.1007/978-0-8176-4695-0r of (.)(mod 1) = ((.). (mod 1),..., (.)(mod 1)) is studied in detail in Sect.4.1. A necessary and sufficient condition for weak-star convergence of (.)(mod 1) to a distribution uniform on [0, l]., ., as . tends to infinity, is established in Theorem 4.2 (Borel, Hopf, Kallenberg). The random vector
29#
發(fā)表于 2025-3-26 14:02:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:52 | 只看該作者
https://doi.org/10.1007/978-1-4419-8684-9Generator; Mathematica; Rang; Variation; dynamical systems; ergodic theory; modeling; probability
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 19:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
综艺| 孝昌县| 佛学| 浦城县| 乐都县| 宁晋县| 夏河县| 大埔县| 大宁县| 南阳市| 类乌齐县| 马龙县| 麻阳| 东源县| 汉沽区| 闵行区| 呈贡县| 轮台县| 故城县| 峡江县| 麻城市| 丹阳市| 奉贤区| 游戏| 玉龙| 古交市| 青田县| 正蓝旗| 托克托县| 军事| 安岳县| 保靖县| 辰溪县| 山东省| 三门峡市| 罗定市| 宁城县| 饶阳县| 镇康县| 潼南县| 安庆市|