找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Road to Randomness in Physical Systems; Eduardo M. R. A. Engel Book 1992 Springer-Verlag Berlin Heidelberg 1992 Generator.Mathematica.Ra

[復(fù)制鏈接]
樓主: ergonomics
21#
發(fā)表于 2025-3-25 07:17:30 | 只看該作者
22#
發(fā)表于 2025-3-25 07:56:08 | 只看該作者
23#
發(fā)表于 2025-3-25 12:27:03 | 只看該作者
Ronald C. Blakey,Wayne D. Ranneythe “..” This chapter deals with the general case, that is, given an n dimensional random vector X and a collection of n by n matrices, .(.); . ∈ . ? IR, attention is focused on conditions under which (.(.).)(mod 1) converges to a distribution uniform on the unit hypercube, ., as . tends to infinity.
24#
發(fā)表于 2025-3-25 19:12:50 | 只看該作者
Bivalvia in Ancient Hydrocarbon SeepsThere are many ways of introducing the concept of probability in classical, i.e. deterministic physics. This work is concerned with one approach, known as “the method of arbitrary functions.” To illustrate it consider the following example:
25#
發(fā)表于 2025-3-25 22:59:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:44:44 | 只看該作者
27#
發(fā)表于 2025-3-26 06:57:04 | 只看該作者
28#
發(fā)表于 2025-3-26 09:07:42 | 只看該作者
https://doi.org/10.1007/978-0-8176-4695-0r of (.)(mod 1) = ((.). (mod 1),..., (.)(mod 1)) is studied in detail in Sect.4.1. A necessary and sufficient condition for weak-star convergence of (.)(mod 1) to a distribution uniform on [0, l]., ., as . tends to infinity, is established in Theorem 4.2 (Borel, Hopf, Kallenberg). The random vector
29#
發(fā)表于 2025-3-26 14:02:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:52 | 只看該作者
https://doi.org/10.1007/978-1-4419-8684-9Generator; Mathematica; Rang; Variation; dynamical systems; ergodic theory; modeling; probability
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
神农架林区| 龙州县| 湘潭市| 布尔津县| 宽甸| 皋兰县| 云梦县| 河源市| 互助| 邛崃市| 紫阳县| 南京市| 宁化县| 三都| 陈巴尔虎旗| 仁怀市| 静海县| 凤台县| 安康市| 沙坪坝区| 贵州省| 吴堡县| 安仁县| 肇庆市| 枞阳县| 东丰县| 花莲市| 台中县| 南木林县| 陆川县| 怀宁县| 陆河县| 玛多县| 武定县| 芜湖县| 民和| 吉林省| 平谷区| 淮阳县| 彭水| 武陟县|