找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Perspective on Canonical Riemannian Metrics; Giovanni Catino,Paolo Mastrolia Book 2020 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: Optician
11#
發(fā)表于 2025-3-23 13:11:35 | 只看該作者
12#
發(fā)表于 2025-3-23 14:04:18 | 只看該作者
13#
發(fā)表于 2025-3-23 18:04:30 | 只看該作者
Information Transfer in Canonical Systems,In this first, introductory chapter we recall some important definitions and results of Riemannian Geometry, essentially following [1]. Although we assume the reader to be familiar with the general subject, as presented, e.g., in the standard references [109, 110, 15, 132, 78, 74], several computations and proofs will be provided in full detail.
14#
發(fā)表于 2025-3-23 23:18:30 | 只看該作者
15#
發(fā)表于 2025-3-24 03:44:28 | 只看該作者
16#
發(fā)表于 2025-3-24 10:10:07 | 只看該作者
17#
發(fā)表于 2025-3-24 13:55:50 | 只看該作者
Economics of Trenchless Technology,In this chapter we introduce a second possible way to study canonical metrics on Riemannian manifolds, namely the one related to “Critical Metrics of Riemannian functionals” (CM, for short).
18#
發(fā)表于 2025-3-24 17:17:34 | 只看該作者
https://doi.org/10.1007/978-1-4615-3058-9Bochner-Weitzenb?ck formulas for the Weyl tensor have been widely used in the last decades; to indicate just some of these works, focused on the study of Einstein manifolds and related structures, we mention those of Derdzinski [68], Singer [139], Hebey-Vaugon [93], Gursky [84, 86], Gursky-Lebrun [87], Yang [149] (see also the references therein).
19#
發(fā)表于 2025-3-24 20:29:59 | 只看該作者
https://doi.org/10.1007/978-1-349-27433-8As in Chapter 4, we denote the spaces of Ricci solitons and of gradient Ricci solitons by ε. and ε. , respectively. A soliton X is . if X is a Killing vector field, or if △ f is parallel in the gradient case: clearly, a trivial Ricci soliton is an Einstein manifold.
20#
發(fā)表于 2025-3-25 00:39:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
九寨沟县| 绥芬河市| 丹棱县| 武义县| 黄平县| 秦皇岛市| 佳木斯市| 普安县| 温州市| 宜丰县| 朝阳区| 浦北县| 交城县| 金昌市| 梅河口市| 堆龙德庆县| 涞水县| 合川市| 柳州市| 邢台市| 汤阴县| 永福县| 水城县| 青海省| 南召县| 扶绥县| 南靖县| 江源县| 文成县| 东宁县| 云安县| 铜川市| 申扎县| 新干县| 宁城县| 永和县| 庆元县| 东平县| 云梦县| 桐梓县| 福清市|