找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Panoramic View of Riemannian Geometry; Marcel Berger Book 2003 Springer-Verlag Berlin Heidelberg 2003 Laplace-Beltrami operator.Ricci fl

[復(fù)制鏈接]
樓主: radionuclides
21#
發(fā)表于 2025-3-25 04:28:11 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:30 | 只看該作者
https://doi.org/10.1007/978-1-349-20201-0rs before discovering this result. It is the kind of theorem which could have waited dozens of years more before being discovered by another mathematician since, unlike so much of intellectual history, it was absolutely not in the air.
23#
發(fā)表于 2025-3-25 12:12:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:58:19 | 只看該作者
https://doi.org/10.1007/978-1-349-16615-2ibrary around 1960. I should say not only that I liked it, but also that I found it very motivating and frequently advertised it. Moreover, the question is the first problem in the problem list Yau [1296]. It is only recently that I discovered that the question of best metric was posed much earlier by Hopf in Hopf 1932 [730], page 220.
25#
發(fā)表于 2025-3-25 20:48:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:27:14 | 只看該作者
B. D. Vujanovic,T. M. Atanackovicnly certain sorts of noncompact Riemannian manifolds to have a hope of obtaining results. Let us mention in particular the possibilities of examining manifolds with finite volume, those with prescribed asymptotic behaviour at infinity, for example quadratic decay,. quadratic curvature decay, volume behaviour, Euclidean asymptoticity, etc.
27#
發(fā)表于 2025-3-26 04:33:39 | 只看該作者
Jonathan M. Borwein,Matthew P. SkerrittEuclidean geomeltry and the geometry of surfaces in E. that we looked at in the preceeding chapter turn out to be quite unsatisfactory for many reasons. We will review some of them here; they are not all logically related.
28#
發(fā)表于 2025-3-26 12:23:06 | 只看該作者
29#
發(fā)表于 2025-3-26 13:22:17 | 只看該作者
B. D. Vujanovic,T. M. AtanackovicIn this chapter, up to and including §13.4, manifolds need not be compact, or even complete, but must have no boundary. Starting in §13.5, manifolds are once again assumed compact without boundary, unless otherwise stated.
30#
發(fā)表于 2025-3-26 19:40:56 | 只看該作者
B. D. Vujanovic,T. M. AtanackovicWe cannot give comprehensive references for this chapter, especially for the generalities. They appear in every book on differential geometry and Riemannian geometry. Only in some special instances will we give references.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗源县| 星子县| 同江市| 亚东县| 湘阴县| 屏边| 淮南市| 永嘉县| 海淀区| 格尔木市| 平远县| 临安市| 台安县| 盈江县| 洛扎县| 大连市| 崇仁县| 蒲城县| 于都县| 武义县| 惠来县| 都安| 郧西县| 乐都县| 平和县| 会理县| 广德县| 延川县| 肥乡县| 蓬莱市| 黔西县| 中卫市| 盘山县| 屏南县| 大田县| 南溪县| 定日县| 宜宾市| 中宁县| 玉溪市| 洛川县|