找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Kaleidoscopic View of Graph Colorings; Ping Zhang Book 2016 The Author 2016 chromatic graph theory.chromatic index.chromatic number.edge

[復制鏈接]
樓主: 助手
31#
發(fā)表于 2025-3-26 23:42:56 | 只看該作者
Frances Stewart,Sanjaya Lall,Samuel Wangwesh this. On the other hand, if the goal of a graph coloring is only to distinguish every two adjacent vertices in . by means of a vertex coloring, then, of course, this can be accomplished by means of a proper coloring of . and the minimum number of colors needed to do this is the . of .. Among the
32#
發(fā)表于 2025-3-27 01:40:11 | 只看該作者
https://doi.org/10.1007/978-1-349-12255-4he color of a vertex is the set of colors of the neighbors of the vertex. In this chapter, proper vertex colorings are also discussed that arise from nonproper vertex colorings but here they are defined in terms of multisets rather than sets.
33#
發(fā)表于 2025-3-27 07:48:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:22:17 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:22 | 只看該作者
36#
發(fā)表于 2025-3-27 17:57:57 | 只看該作者
https://doi.org/10.1007/978-3-642-34946-1 coloring of . whose colors are (. + 1)-tuples of nonnegative integers. In this chapter, we discuss the corresponding (. + 1)-tuples when the original coloring is a nonproper coloring. This gives rise to vertex-distinguishing colorings called recognizable colorings.
37#
發(fā)表于 2025-3-27 21:55:16 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:06 | 只看該作者
39#
發(fā)表于 2025-3-28 06:48:39 | 只看該作者
https://doi.org/10.1007/978-981-10-3467-1In this chapter we describe yet another proper vertex coloring induced by a given nonproper vertex coloring of a graph. This proper vertex coloring is defined with the aid of distances and this too may very well require fewer colors than the chromatic number of the graph.
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
迁安市| 安泽县| 铅山县| 莎车县| 青龙| 阳泉市| 什邡市| 德阳市| 于都县| 扎囊县| 红河县| 渝北区| 宿松县| 喀喇| 湘潭县| 玉环县| 侯马市| 惠来县| 彰武县| 昭苏县| 周口市| 陈巴尔虎旗| 乐东| 孝感市| 新郑市| 南溪县| 阿巴嘎旗| 贺兰县| 大新县| 肥乡县| 台山市| 平安县| 厦门市| 顺平县| 瑞昌市| 治多县| 汾阳市| 七台河市| 拉孜县| 高雄市| 利辛县|