找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course on Topological Vector Spaces; Jürgen Voigt Textbook 2020 Springer Nature Switzerland AG 2020 topology.convex spaces.polars.bipola

[復制鏈接]
樓主: 人工合成
31#
發(fā)表于 2025-3-26 22:05:19 | 只看該作者
The Reading Diaries: Four Case StudiesLocally convex spaces are introduced as topological vector spaces possessing a neighbourhood base of zero consisting of convex sets. It is shown that then the topology can also be defined by a set of semi-norms. In order to show this and other features, we first treat separation properties.
32#
發(fā)表于 2025-3-27 05:04:47 | 只看該作者
33#
發(fā)表于 2025-3-27 06:27:29 | 只看該作者
Cara Lynn Scheuer,Albert J. MillsWe start by discussing semi-reflexivity and Montel spaces and present a number of examples of function spaces. At the end we present duality properties for reflexive spaces and Montel spaces.
34#
發(fā)表于 2025-3-27 12:22:01 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:47 | 只看該作者
Hanna Salminen,Monika von BonsdorffThis chapter is a short survey on the technical properties mentioned in the title, for subsets of topological vector spaces and locally convex spaces.
36#
發(fā)表于 2025-3-27 20:17:41 | 只看該作者
Hanna Salminen,Monika von BonsdorffIn this and the following two chapters we discuss some surprising properties concerning the weak topology of Banach spaces. (However, the discussion will not be restricted to Banach spaces!)
37#
發(fā)表于 2025-3-28 01:28:14 | 只看該作者
Belinda Yuen,?pela Mo?nik,Winston YapAnother surprising result is Krein’s theorem, stating that the closed convex hull of a weakly compact set in a Banach space is again weakly compact. This will be shown in a much more general context. For the proof, the Pettis integral of vector-valued functions will be defined and applied.
38#
發(fā)表于 2025-3-28 05:24:50 | 只看該作者
39#
發(fā)表于 2025-3-28 08:11:09 | 只看該作者
40#
發(fā)表于 2025-3-28 12:32:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
佛学| 同德县| 宜宾市| 团风县| 博兴县| 哈尔滨市| 奉贤区| 调兵山市| 四平市| 阿拉善右旗| 长顺县| 雷山县| 营口市| 德钦县| 崇礼县| 彝良县| 徐汇区| 女性| 电白县| 东兴市| 永顺县| 慈溪市| 岳池县| 安西县| 东港市| 贵州省| 安国市| 惠安县| 马尔康县| 石家庄市| 民勤县| 曲沃县| 陆河县| 西林县| 中山市| 保康县| 太康县| 开平市| 惠来县| 黄冈市| 嵊泗县|