找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Course in Constructive Algebra; Ray Mines,Fred Richman,Wim Ruitenburg Book 1988 Springer Science+Business Media New York 1988 Galois th

[復(fù)制鏈接]
樓主: detumescence
21#
發(fā)表于 2025-3-25 06:10:22 | 只看該作者
22#
發(fā)表于 2025-3-25 08:17:09 | 只看該作者
Emmanuel Akyeampong,Pashington Obeng report that every polynomial of odd degree has a root, and that there is a digit that occurs infinitely often in the decimal expansion of π. In opposition to this is the constructive view of mathematics, which focuses attention on the dynamic interaction of the individual with the mathematical univ
23#
發(fā)表于 2025-3-25 12:24:55 | 只看該作者
24#
發(fā)表于 2025-3-25 17:14:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:40:51 | 只看該作者
26#
發(fā)表于 2025-3-26 03:39:15 | 只看該作者
Roman Grynberg,Fwasa K. Singogory of abelian groups, which are modules over the integers. The analogue of a finite-dimensional vector space is a finitely presented module over a principal ideal domain. A finitely presented module is given by matrix. In this section we prove some basic facts about matrices over a principal ideal d
27#
發(fā)表于 2025-3-26 05:55:18 | 只看該作者
Roman Grynberg,Fwasa K. Singogoin . that are integral over .. If every element of . is integral over ., then we say that . is an . of .. If . is equal to the integral closure of . in ., then we say that . is . .. If . is a field, the word . in the above definitions may be replaced by the word ..
28#
發(fā)表于 2025-3-26 09:34:12 | 只看該作者
29#
發(fā)表于 2025-3-26 14:33:05 | 只看該作者
https://doi.org/10.1007/978-94-009-1637-1on of ., but other definitions have led to proofs. Standard classical proofs of the Hilbert basis theorem are constructive, if by . we mean that every ideal is finitely generated, but only trivial rings are Noetherian in this sense from the constructive point of view. The first proof of a constructi
30#
發(fā)表于 2025-3-26 19:59:37 | 只看該作者
R. Delmas,J. P. Lacaux,D. Brocardare .-algebras, then a . from . to . is a ring homomorphism that is also a .-linear transformation. The term ., when applied to a structure S that is a vector space over ., like a .-algebra, signifies that S is a finite-dimensional vector space over ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仓市| 宜春市| 旺苍县| 社会| 卢氏县| 贵南县| 礼泉县| 鹤壁市| 福清市| 巴楚县| 蒙阴县| 祁连县| 淅川县| 鹿邑县| 沙湾县| 普兰店市| 安塞县| 甘南县| 封开县| 南投县| 永州市| 高雄市| 新绛县| 武义县| 卫辉市| 南汇区| 临颍县| 河南省| 施甸县| 长武县| 平定县| 贵南县| 阳西县| 嘉祥县| 建湖县| 福州市| 左权县| 三江| 福泉市| 贵港市| 安阳市|