找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: A Concrete Introduction to Higher Algebra; Lindsay N. Childs Textbook 2009Latest edition Springer-Verlag New York 2009 algebra.field.finit

[復(fù)制鏈接]
樓主: 令人不愉快
31#
發(fā)表于 2025-3-27 00:16:22 | 只看該作者
Lindsay N. ChildsInformal and readable introduction to higher algebra.New sections on Luhn‘s formula, Cosets and equations, and detaching coefficients.Successful undergraduate text for more than 20 years
32#
發(fā)表于 2025-3-27 04:47:44 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:28 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:45 | 只看該作者
Fazit: Klappe zu, Affe(kt) tot?,This chapter uses Bezout‘s identity and induction to prove the Fundamental Theorem of Arithmetic, that every natural number factors uniquely into a product of prime numbers. After exploring some initial consequences of the Fundamental Theorem, we introduce the study of prime numbers, a deep and fascinating area of number theory.
35#
發(fā)表于 2025-3-27 16:04:33 | 只看該作者
36#
發(fā)表于 2025-3-27 20:16:51 | 只看該作者
https://doi.org/10.1007/978-3-476-05104-2The idea in this chapter is to use congruence to split up the set ? of integers into a finite collection of disjoint subsets, think of the subsets as objects, and then see if the arithmetic operations on ? can induce arithmetic operations on the new objects in a way that makes sense. To see how this might work, we first look at two examples.
37#
發(fā)表于 2025-3-28 01:58:38 | 只看該作者
Kenneth T. Kishida,L. Paul SandsIn this chapter we introduce and apply to ?/.? some of the most basic concepts of “abstract” algebra: the concepts of group, ring, field, and ring homomorphism.
38#
發(fā)表于 2025-3-28 03:12:09 | 只看該作者
Jonas Everaert,James J. Gross,Andero UusbergThe applications of Fermat‘s and Euler‘s Theorems in this chapter are to cryptography and to the study of large numbers.
39#
發(fā)表于 2025-3-28 08:31:16 | 只看該作者
40#
發(fā)表于 2025-3-28 11:34:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜城县| 黄浦区| 天祝| 堆龙德庆县| 天水市| 泗阳县| 天祝| 格尔木市| 黑水县| 肃宁县| 儋州市| 贡嘎县| 卫辉市| 墨竹工卡县| 塔城市| 伊春市| 宜宾县| 新平| 金湖县| 德格县| 德阳市| 肥西县| 公主岭市| 江津市| 塔河县| 青岛市| 兴安县| 茶陵县| 定陶县| 福安市| 滨州市| 郧西县| 武城县| 绩溪县| 栾城县| 凤山市| 保靖县| 洮南市| 武夷山市| 平原县| 九龙县|