找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Comprehensive Treatment of q-Calculus; Thomas Ernst Book 2012 Springer Basel 2012 q-Appell function.q-Bernoulli numbers.q-gamma function

[復(fù)制鏈接]
樓主: Monsoon
31#
發(fā)表于 2025-3-26 21:02:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:51:34 | 只看該作者
https://doi.org/10.1007/978-3-662-58237-4 polynomials are defined by the Rodrigues formula to enable an easy orthogonality relation. .-Legendre polynomials have been given before, but these do not have the same orthogonality range in the limit as ordinary Legendre polynomials. We also find .-difference equations for these polynomials.
33#
發(fā)表于 2025-3-27 06:20:01 | 只看該作者
34#
發(fā)表于 2025-3-27 12:11:29 | 只看該作者
35#
發(fā)表于 2025-3-27 16:41:34 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:36 | 只看該作者
Pr?operative Einsch?tzung und Pr?medikationach of Sections?.–., we focus on a certain such △. operator and find four formulas (the quartet of formulas) in each section. A?.-power sum of Carlitz plays a special role. We present tables and recurrence formulas for the two polynomial .-Stirling numbers.
37#
發(fā)表于 2025-3-27 22:14:46 | 只看該作者
R. Larsen,H. Sonntag,D. Kettlerl model. We illustrate with equations for the classical .-oscillator, the .-commutator, the Heisenberg .-uncertainty relation, and the creation and annihilation operators. The titles of the subsections are:
38#
發(fā)表于 2025-3-28 05:05:23 | 只看該作者
39#
發(fā)表于 2025-3-28 07:50:33 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:02 | 只看該作者
Front Matter to philosophical aspects of peace research neglected by the bulk of recent peace research, especially by trends which are led astray into the labyrinth of quasi-structural analysis, not probing beyond the superficial demonstration of so-called ‘structural violence’ (see under III hereafter). Moreov
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河北区| 银川市| 苏尼特左旗| 浦东新区| 徐闻县| 新蔡县| 宁都县| 阿拉善右旗| 宁远县| 浠水县| 株洲县| 巨鹿县| 永德县| 冕宁县| 花莲县| 涿鹿县| 安宁市| 咸阳市| 金华市| 汪清县| 康定县| 旬阳县| 舟山市| 江门市| 洪江市| 旬阳县| 磐安县| 嘉禾县| 呼和浩特市| 三亚市| 商丘市| 宝坻区| 沧州市| 正阳县| 左权县| 银川市| 图木舒克市| 临潭县| 广东省| 桓仁| 睢宁县|