找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: AComprehensive Textbook on Sample Surveys; Arijit Chaudhuri,Sanghamitra Pal Textbook 2022 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: STRI
41#
發(fā)表于 2025-3-28 14:52:17 | 只看該作者
42#
發(fā)表于 2025-3-28 21:00:38 | 只看該作者
2523-3114 network and adaptive sampling methods and more. The book includes detailed case studies and exercises, making it valuable for students of statistics, specifically survey sampling.?978-981-19-1420-1978-981-19-1418-8Series ISSN 2523-3114 Series E-ISSN 2523-3122
43#
發(fā)表于 2025-3-28 23:14:14 | 只看該作者
44#
發(fā)表于 2025-3-29 05:11:28 | 只看該作者
45#
發(fā)表于 2025-3-29 08:58:45 | 只看該作者
Language Invasion and Language Death,on approach is adopted. A fourth approach is Bayesian, postulating a prior distribution for . and then working out a posterior distribution and a posterior expectation of ., given the sample data at hand. As certain parameters are involved in the prior and are unknowable in practice, they may be sui
46#
發(fā)表于 2025-3-29 12:22:51 | 只看該作者
https://doi.org/10.1007/978-3-030-04681-1y exploit similarities in features of various domains. How to achieve this is our topic in this chapter. Additionally, if for domains of interest, past data are available in case surveys are done consecutively over time, borrowing strength from past data with appropriate modeling, especially on empl
47#
發(fā)表于 2025-3-29 15:52:11 | 只看該作者
48#
發(fā)表于 2025-3-29 21:16:20 | 只看該作者
https://doi.org/10.1007/978-3-030-04681-1osed to underlie the situation so that observations are generated conceptually from a model characterising the probability distribution specifying a super-population of which a finite population is a constituent entity. Then parameters in respect of the models are studied as Analytical studies.
49#
發(fā)表于 2025-3-30 03:29:13 | 只看該作者
Super-Population Modeling. Model-Assisted Approach. Asymptotics,978-1-4020-4425-0
50#
發(fā)表于 2025-3-30 07:58:59 | 只看該作者
Prediction Approach: Robustness, Bayesian Methods, Empirical Bayes,978-94-007-3934-5
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
改则县| 井陉县| 鲁山县| 乌审旗| 阿瓦提县| 霍城县| 墨玉县| 泗水县| 京山县| 中西区| 镇宁| 长沙县| 天台县| 安平县| 德格县| 怀集县| 余干县| 皋兰县| 普陀区| 巩义市| 福清市| 襄城县| 达日县| 彰武县| 潜山县| 辰溪县| 海伦市| 西丰县| 昌乐县| 莱州市| 丰城市| 泌阳县| 阿克陶县| 长治县| 舟山市| 于都县| 合山市| 白河县| 怀柔区| 顺平县| 河东区|