找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Comprehensive Textbook on Metric Spaces; Surinder Pal Singh Kainth Textbook 2023 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:06:41 | 只看該作者
set theory and proofs through games.Contains 966 exercises,.This textbook provides a comprehensive course in metric spaces. Presenting a smooth takeoff from basic real analysis to metric spaces, every chapter of the book presents a single concept, which is further unfolded and elaborated through re
32#
發(fā)表于 2025-3-27 02:01:25 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:33 | 只看該作者
34#
發(fā)表于 2025-3-27 12:18:11 | 只看該作者
35#
發(fā)表于 2025-3-27 17:25:33 | 只看該作者
Amelie G. Ramirez,Edward J. Trapido the case of monotone functions along with the general case, which asserts that the set of discontinuities of a function between metric spaces is a countable union of closed sets. Finally, there is a section on cardinality which provides a glimpse into cardinal arithmetic.
36#
發(fā)表于 2025-3-27 19:01:31 | 只看該作者
Dinorah Martinez Tyson,Erik L. Ruizs several extension theorems, including the results by Tietze, Kuratowski, and Lavrentiev. Finally, we present the case of normed spaces, particularly the equivalence of all norms on finite-dimensional spaces.
37#
發(fā)表于 2025-3-28 00:26:09 | 只看該作者
38#
發(fā)表于 2025-3-28 02:56:34 | 只看該作者
https://doi.org/10.1007/978-3-031-14436-3r cases of normed spaces and sequence spaces. To provide a glimpse into generalizations from reals, we have included a section on convergence of sequences in metric spaces which also contains the case of finite-dimensional Euclidean spaces.
39#
發(fā)表于 2025-3-28 08:15:08 | 只看該作者
Advancing the Science of Cancer in Latinos. The completion of a metric space is discussed in a separate section where we establish that the Cauchy completion of . is isometric to its Dedekind completion. Finally, we present various Banach spaces, including the space of continuous functions, and some results regarding absolute and unconditional convergence.
40#
發(fā)表于 2025-3-28 14:03:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲县| 馆陶县| 塔河县| 西畴县| 渝北区| 浠水县| 县级市| 临西县| 金乡县| 营口市| 广丰县| 平塘县| 萍乡市| 禄劝| 海宁市| 拉萨市| 修水县| 云和县| 澄迈县| 澄城县| 崇明县| 大冶市| 新津县| 和政县| 东乡| 大城县| 朔州市| 浠水县| 东港市| 安丘市| 西平县| 连江县| 江油市| 抚松县| 高邮市| 江华| 托里县| 西贡区| 墨玉县| 大方县| 洞口县|