找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Combinatorial Perspective on Quantum Field Theory; Karen Yeats Book 2017 The Author(s) 2017 Dyson-Schwinger equations.graph theory.Feynm

[復(fù)制鏈接]
樓主: 櫥柜
11#
發(fā)表于 2025-3-23 12:58:56 | 只看該作者
12#
發(fā)表于 2025-3-23 16:25:26 | 只看該作者
Combinatorial Aspects of Some Integration Algorithmstung der Ergebnisformeln so ausführlich gehalten, dass sie sofort nachvollzogen und ohne eigene Zwischenrechnungen verstanden w- den kann. Dem Studierenden wird es somit erm?glicht, sich auf die dargestellten physika- schen Zusammenh?nge und vor allem auf978-3-8348-9246-1
13#
發(fā)表于 2025-3-23 20:10:44 | 只看該作者
https://doi.org/10.1007/978-3-319-47551-6Dyson-Schwinger equations; graph theory; Feynman graphs; Feynman periods; Connes-Kreimer Hopf algebra; Sc
14#
發(fā)表于 2025-3-24 01:07:27 | 只看該作者
Bhupesh Aneja,Kanchan Sharma,Amita Rana other hand, from the physics side, too often combinatorics is viewed as a kind of uninteresting messy detail. However, there is actually a lot of beautiful and useful combinatorics in quantum field theory, and the discrete structures illuminate the physical structure. Neither side is necessarily we
15#
發(fā)表于 2025-3-24 05:26:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:06:08 | 只看該作者
17#
發(fā)表于 2025-3-24 12:59:35 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:20 | 只看該作者
https://doi.org/10.1007/978-3-319-78075-7hysically relevant situations. We will, however, be sticking to the single scale case as one sees in propagator insertions. We still want to have combinatorial control over the answer and so the first step is to rewrite the analytic Dyson-Schwinger equation so as to unwind the analytic side from the
19#
發(fā)表于 2025-3-24 19:49:48 | 只看該作者
Advances in Systematic Creativityexpansions but we want functions. What can we hope to do? First we can ask about asymptotics for the coefficients of our expansions. Another thing we can do is to think again about how the expansion is indexed and use that to break it up in a different way.
20#
發(fā)表于 2025-3-25 01:25:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲沃县| 长治市| 巴青县| 东丽区| 黄浦区| 临漳县| 揭阳市| 尚志市| 比如县| 西充县| 靖安县| 黎川县| 上杭县| 疏附县| 海阳市| 上饶市| 哈巴河县| 喀喇沁旗| 曲阳县| 逊克县| 丽水市| 青龙| 宿州市| 炎陵县| 双辽市| 专栏| 墨竹工卡县| 睢宁县| 庆阳市| 通化市| 巴彦淖尔市| 大港区| 龙江县| 宿松县| 图们市| 麦盖提县| 鄂托克前旗| 夏河县| 五寨县| 衡阳市| 泰和县|