找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Numbers Europe II; Contributions to Num Irene I. Bouw,Ekin Ozman,Rachel Newton Conference proceedings 2018 The Author(s) and the A

[復(fù)制鏈接]
樓主: 誓約
21#
發(fā)表于 2025-3-25 06:44:18 | 只看該作者
22#
發(fā)表于 2025-3-25 07:42:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:38:00 | 只看該作者
,On Birch and Swinnerton-Dyer’s Cubic Surfaces,ondence between this failure and the Brauer–Manin obstruction, recently discovered by Manin. We extend their work to show that a larger set of cubic surfaces has a Brauer–Manin obstruction to the Hasse principle, thus verifying the Colliot-Thélène–Sansuc conjecture for infinitely many cubic surfaces
24#
發(fā)表于 2025-3-25 16:40:27 | 只看該作者
Conference proceedings 2018mber theory and arithmetic geometry. Research reports from projects started at the conference, expository papers describing ongoing research, and contributed papers from women number theorists outside the conference make up this diverse volume. Topics cover a broad range of topics such as arithmetic
25#
發(fā)表于 2025-3-25 23:56:22 | 只看該作者
Lower Bounds for Heights in Relative Galois Extensions,., depending on the degree of . and the number of conjugates of . which are multiplicatively independent over .. As a consequence, we obtain a height bound for such . that is independent of the multiplicative independence condition.
26#
發(fā)表于 2025-3-26 03:48:38 | 只看該作者
On the Carlitz Rank of Permutation Polynomials Over Finite Fields: Recent Developments, problem to the well-known Chowla–Zassenhaus conjecture is described. We also present some initial observations on the iterations of a permutation polynomial . and hence on the order of . as an element of the symmetric group ...
27#
發(fā)表于 2025-3-26 05:13:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:43 | 只看該作者
,On Birch and Swinnerton-Dyer’s Cubic Surfaces,ondence between this failure and the Brauer–Manin obstruction, recently discovered by Manin. We extend their work to show that a larger set of cubic surfaces has a Brauer–Manin obstruction to the Hasse principle, thus verifying the Colliot-Thélène–Sansuc conjecture for infinitely many cubic surfaces.
29#
發(fā)表于 2025-3-26 15:22:32 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:37 | 只看該作者
Women in Numbers Europe II978-3-319-74998-3Series ISSN 2364-5733 Series E-ISSN 2364-5741
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高安市| 深水埗区| 定安县| 库尔勒市| 洪洞县| 长垣县| 宁津县| 昌图县| 青河县| 绵阳市| 北川| 田东县| 滕州市| 阿鲁科尔沁旗| 保德县| 通渭县| 平阳县| 黎平县| 杨浦区| 奇台县| 东辽县| 灌阳县| 临泽县| 宣武区| 泰州市| 三门峡市| 鄂伦春自治旗| 江山市| 唐河县| 汽车| 城市| 甘南县| 曲阜市| 和田县| 文昌市| 望奎县| 额济纳旗| 富锦市| 鹿邑县| 原阳县| 漠河县|