找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Analysis and PDE; Marianna Chatzakou,Michael Ruzhansky,Diana Stoeva Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: deflate
41#
發(fā)表于 2025-3-28 15:29:21 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:26 | 只看該作者
43#
發(fā)表于 2025-3-29 00:36:13 | 只看該作者
978-3-031-57007-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
44#
發(fā)表于 2025-3-29 06:38:09 | 只看該作者
45#
發(fā)表于 2025-3-29 07:59:38 | 只看該作者
Recovery of an Initial Condition from Later Time Samples,n. This framework combines spatiotemporal samples to produce various states of approximations and eventually reconstructs the solution exactly. Our model covers multiple initial value problems under the assumption that the initial conditions function is in a select function class.
46#
發(fā)表于 2025-3-29 11:30:43 | 只看該作者
47#
發(fā)表于 2025-3-29 17:40:41 | 只看該作者
48#
發(fā)表于 2025-3-29 23:44:51 | 只看該作者
On Octonionic Harmonic Projection Operators,th .. In this paper, we start to study these projectors in the octonionic setting, that is, when . and .. We also formulate a conjecture about the norm of harmonic projection operators, considered as operators from . onto ., for . and ..
49#
發(fā)表于 2025-3-30 00:54:26 | 只看該作者
50#
發(fā)表于 2025-3-30 06:22:14 | 只看該作者
,On the Green’s Function of the Perturbed Laplace-Beltrami Operator with a Finite Number of Punctures, some properties of Green’s function for the Laplace-Beltrami operator on the two-dimensional sphere in the three-dimensional Euclidean space, which have previously been studied in detail, are presented here. The Green’s function of the Laplace-Beltrami operator on the two-dimensional sphere with a finite number of punctured points is presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浙江省| 方正县| 乡宁县| 商水县| 信丰县| 上饶县| 古田县| 南岸区| 三原县| 安宁市| 曲麻莱县| 乌兰县| 沅江市| 福海县| 岳普湖县| 南丹县| 马公市| 绥江县| 三门峡市| 崇仁县| 从江县| 新晃| 团风县| 娱乐| 吉林市| 天全县| 晋城| 上蔡县| 长葛市| 阳谷县| 桓台县| 凤庆县| 襄汾县| 广灵县| 禹州市| 泸西县| 呼图壁县| 闻喜县| 长子县| 娄烦县| 嘉善县|