找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: übungsprogramm zur statistischen Methodenlehre; ágnes Reichardt Textbook 2002Latest edition Betriebswirtschaftlicher Verlag Dr. Th. Gabler

[復(fù)制鏈接]
樓主: 猛烈抨擊
21#
發(fā)表于 2025-3-25 06:43:18 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:37 | 只看該作者
https://doi.org/10.1007/978-94-017-9591-3Bei den Indexzahlen stehen im Rahmen der statistischen Methodenlehre deren formale Eigenschaften im Vordergrund. Indexzahlen beschreiben die relativen, d.h. auf eine Basiszeit (0) bezogenen zeitlichen Ver?nderungen von Gruppen von Preisen (p) oder Gütermengen (q).
23#
發(fā)表于 2025-3-25 15:39:40 | 只看該作者
Njeri Kiaritha,Maina Waiganjo,Musembi NunguZwei Ereignisse . und . hei?en unabh?ngig, wenn gilt: ..
24#
發(fā)表于 2025-3-25 19:34:39 | 只看該作者
25#
發(fā)表于 2025-3-25 21:10:04 | 只看該作者
26#
發(fā)表于 2025-3-26 04:00:26 | 只看該作者
Historical and Cultural BackgroundZur Berechnung der Wahrscheinlichkeit .(|. - μ |≥ .) für beliebige . ben?tigt man die Kenntnis der Verteilungsfunktion. Die Ungleichung von Tschebyscheff ergibt eine Absch?tzung dieser Wahrscheinlichkeit, die nur die Kenntnis der Varianz σ. dieser Zufallsvariablen ben?tigt: . oder umgeformt . Von Interesse sind die Ergebnisse nur, falls . > σ ist.
27#
發(fā)表于 2025-3-26 08:12:06 | 只看該作者
Factors of Production: TechnologyEine Sch?tzfunktion ist eine Stichprobenfunktion, deren Realisation eine Punktsch?tzung ergibt, d.h. eine einzelne Zahl, die als Sch?tzwert für den unbekannten Parameter θ dient. Die Qualit?t einer Sch?tzfunktion Θ = .(., ..., .) wird durch ihre stochastischen Eigenschaften bestimmt.
28#
發(fā)表于 2025-3-26 11:03:01 | 只看該作者
https://doi.org/10.1007/978-3-031-51154-7Oft kann die Verteilung von Testfunktionen nicht exakt angegeben werden. In diesen F?llen versucht man mit approximierenden Verteilungen auszukommen. Wichtig sind diejenigen F?lle, in denen die approximierende Verteilung die Normalverteilung ist. In allen F?llen sind die Approximatonsbedingungen zu beachten.
29#
發(fā)表于 2025-3-26 14:09:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:29:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴安盟| 微山县| 民县| 秦安县| 霞浦县| 叶城县| 方山县| 福建省| 唐河县| 隆安县| 北票市| 达孜县| 碌曲县| 光泽县| 威宁| 新兴县| 安平县| 塔城市| 荔浦县| 二连浩特市| 丹阳市| 两当县| 东阿县| 越西县| 浮梁县| 海兴县| 小金县| 海晏县| 读书| 肥城市| 隆化县| 兰溪市| 通江县| 贵州省| 高州市| 石家庄市| 依兰县| 余庆县| 廉江市| 仁布县| 普洱|