找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weil Conjectures, Perverse Sheaves and ?-adic Fourier Transform; Reinhardt Kiehl,Rainer Weissauer Book 2001 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: 實體
31#
發(fā)表于 2025-3-26 22:01:42 | 只看該作者
The Formalism of Derived Categories,of the category .(.), the notion of (short) exact sequences of complexes no longer exists and has to be replaced by the notion of distinguished triangles, which itself derives from the concept of mapping cones.
32#
發(fā)表于 2025-3-27 03:23:53 | 只看該作者
The Formalism of Derived Categories,of the category .(.), the notion of (short) exact sequences of complexes no longer exists and has to be replaced by the notion of distinguished triangles, which itself derives from the concept of mapping cones.
33#
發(fā)表于 2025-3-27 08:27:24 | 只看該作者
The Formalism of Derived Categories,ory is defined by making quasiisomorphisms into isomorphisms and this allows to identify complexes with their resolutions. Recall, that a complex map .′ → . is a quasiisomorphism, if the induced cohomology morphisms ..(.’) → ..(.)are isomorphisms in all degrees. However, by taking this localization
34#
發(fā)表于 2025-3-27 10:00:55 | 只看該作者
35#
發(fā)表于 2025-3-27 17:32:48 | 只看該作者
36#
發(fā)表于 2025-3-27 20:22:51 | 只看該作者
The Formalism of Derived Categories,ory is defined by making quasiisomorphisms into isomorphisms and this allows to identify complexes with their resolutions. Recall, that a complex map .′ → . is a quasiisomorphism, if the induced cohomology morphisms ..(.’) → ..(.)are isomorphisms in all degrees. However, by taking this localization
37#
發(fā)表于 2025-3-27 22:09:02 | 只看該作者
Perverse Sheaves,sky-MacPherson, which originally was not defined in terms of sheaf theory but rather using explicit chain complexes. Perhaps stimulated by the Kazhdan-Lusztig conjectures it was Deligne, who gave a reformulation of the notion of intersection cohomology within the setting of sheaf theory. In this for
38#
發(fā)表于 2025-3-28 03:46:56 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:04 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
普兰店市| 正蓝旗| 泰兴市| 洱源县| 普宁市| 宣恩县| 颍上县| 湄潭县| 余姚市| 绥江县| 横峰县| 丁青县| 永川市| 闽侯县| 西宁市| 随州市| 延安市| 清河县| 赤壁市| 金阳县| 辽阳市| 荆门市| 宝兴县| 军事| 巴彦县| 泌阳县| 双柏县| 瑞金市| 电白县| 陆河县| 邹城市| 灵川县| 寿宁县| 庆元县| 惠东县| 乡宁县| 河北区| 安平县| 井陉县| 贵德县| 萨嘎县|