找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 4th International Jo Xin Wang,Rui Zhang,Yang-Sae Moon Conference proceedings 2020 Springer Nature Switzerland AG 2020 art

[復(fù)制鏈接]
樓主: Capricious
31#
發(fā)表于 2025-3-27 00:13:04 | 只看該作者
32#
發(fā)表于 2025-3-27 04:47:14 | 只看該作者
Active Classification of Cold-Start Users in Large Sparse Datasetsg, a query is selected based on the current knowledge learned in these two online factorization models. We demonstrate with real-world movie rating datasets that our framework is highly effective. It not only gains better improvement in classification, but also reduces the number of invalid queries.
33#
發(fā)表于 2025-3-27 07:23:29 | 只看該作者
34#
發(fā)表于 2025-3-27 10:18:50 | 只看該作者
35#
發(fā)表于 2025-3-27 15:01:36 | 只看該作者
Partition-Oriented Subgraph Matching on GPUeal-world graphs, and further reduce the redundant global memory access caused by the redundant neighbor set accessing. Besides, to further improve the performance, we propose a well-directed filtering strategy by exploiting a property of real-world graphs. The experiments show that compared with th
36#
發(fā)表于 2025-3-27 17:45:48 | 只看該作者
Content Sharing Prediction for Device-to-Device (D2D)-based Offline Mobile Social Networks by Networand achieve more accurate predictions for both discovered and undiscovered relations in the D2D social network. Specifically, we consider the Global Positioning System (GPS) information as a critical relation slice to avoid the loss of potential information. Experiments on a realistic large-scale D2
37#
發(fā)表于 2025-3-28 01:21:52 | 只看該作者
38#
發(fā)表于 2025-3-28 02:57:55 | 只看該作者
Instance-Aware Evaluation of Sensitive Columns in Tabular Dataset relational schema varies. Moreover, our scheme can quantify the risks of the columns no matter the semantics of columns are known or not. We also empirically show that the proposed scheme is effective in dataset sensitivity governance comparing with baselines.
39#
發(fā)表于 2025-3-28 06:53:09 | 只看該作者
EPUR: An Efficient Parallel Update System over Large-Scale RDF Data, parallel update operations are developed to handle incremental RDF data. Based on the innovations above, we implement an efficient parallel update system (EPUR). Extensive experiments show that EPUR outperforms RDF-3X, Virtuoso, PostgreSQL and achieves good scalability on the number of threads.
40#
發(fā)表于 2025-3-28 13:11:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰台区| 平邑县| 晴隆县| 永平县| 新化县| 出国| 丹凤县| 江西省| 宜兰县| 大庆市| 云龙县| 永州市| 罗山县| 平阴县| 蓬溪县| 集安市| 收藏| 莱阳市| 鲜城| 新密市| 财经| 泸溪县| 本溪| 虹口区| 定州市| 秭归县| 固安县| 昆明市| 南和县| 赞皇县| 聂拉木县| 宜兴市| 泉州市| 江川县| 荣昌县| 尼木县| 青铜峡市| 瑞昌市| 梅州市| 建始县| 武城县|