找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 使作嘔
11#
發(fā)表于 2025-3-23 10:31:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:57 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:16 | 只看該作者
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
14#
發(fā)表于 2025-3-23 22:36:08 | 只看該作者
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
15#
發(fā)表于 2025-3-24 04:36:47 | 只看該作者
Generic and?Scalable Detection of?Risky Transactions Using Density Flows: Applications to?Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
16#
發(fā)表于 2025-3-24 09:07:11 | 只看該作者
Generic and?Scalable Detection of?Risky Transactions Using Density Flows: Applications to?Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
17#
發(fā)表于 2025-3-24 11:59:52 | 只看該作者
Attributed Heterogeneous Graph Embedding with?Meta-graph Attentionlly, the node embeddings under different meta-graphs are fused by considering the importance of meta-graphs. Experimental results on three real datasets show the proposed AHEMA model outperforms the baselines on node classification and node clustering tasks.
18#
發(fā)表于 2025-3-24 16:37:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:22 | 只看該作者
Automated Multi-scale Contrastive Learning with?Sample-Awareness for?Graph Classificationopology of the input graph and refine neighborhood information. Extensive experiments on eight benchmark datasets demonstrate that our proposed SaMGCL achieves superior graph classification performance compared to the current state-of-the-art approaches.
20#
發(fā)表于 2025-3-25 02:54:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叶城县| 长兴县| 化州市| 蒲城县| 黄骅市| 肥东县| 即墨市| 汉源县| 台山市| 青神县| 唐河县| 高碑店市| 五家渠市| 揭西县| 广安市| 屏东市| 仙居县| 彰武县| 青铜峡市| 原平市| 安义县| 葵青区| 耒阳市| 射阳县| 田林县| 扎赉特旗| 普陀区| 盐源县| 绥阳县| 格尔木市| 孟津县| 庄浪县| 方正县| 临湘市| 年辖:市辖区| 额敏县| 张北县| 吴江市| 嘉兴市| 双牌县| 秦安县|