找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 7th International Jo Xiangyu Song,Ruyi Feng,Geyong Min Conference proceedings 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 導(dǎo)彈
31#
發(fā)表于 2025-3-26 23:35:31 | 只看該作者
32#
發(fā)表于 2025-3-27 03:03:06 | 只看該作者
,DADR: A Denoising Approach for?Dense Retrieval Model Training,ch reduces the effects of noise on model performance by assigning diverse weights to the different samples during the training process. We incorporate the proposed DADR approach with three representative kinds of sampling methods and different loss functions. Experimental results on two publicly ava
33#
發(fā)表于 2025-3-27 07:18:18 | 只看該作者
,Multi-pair Contrastive Learning Based on?Same-Timestamp Data Augmentation for?Sequential Recommendaractions. During the training and testing process, we design three types of samples so as to imitate human learning. Extensive experiments on two benchmark datasets show that our model outperforms state-of-the-art sequential models.
34#
發(fā)表于 2025-3-27 11:21:21 | 只看該作者
,PaTraS: A Path-Preserving Trajectory Simplification Method for?Low-Loss Map Matching,asures the importance of a trajectory point with respect to how it contributes to the map-matching results. Extensive experiments show that, compared with state-of-the-art methods, our proposed solution can better preserve the path generated by trajectory map-matching at the cost of a slightly incre
35#
發(fā)表于 2025-3-27 15:37:32 | 只看該作者
,Enhancing Collaborative Features with?Knowledge Graph for?Recommendation,ant semantic information in KG, we design an attribute aggregation scheme and an inference mechanism for GNN which directly propagates further attributes and inference information to the central node. Extensive experiments conducted on three public datasets demonstrate the superior performance of CK
36#
發(fā)表于 2025-3-27 19:36:30 | 只看該作者
,DADR: A Denoising Approach for?Dense Retrieval Model Training,ch reduces the effects of noise on model performance by assigning diverse weights to the different samples during the training process. We incorporate the proposed DADR approach with three representative kinds of sampling methods and different loss functions. Experimental results on two publicly ava
37#
發(fā)表于 2025-3-27 23:10:09 | 只看該作者
,PageCNNs: Convolutional Neural Networks for?Multi-label Chinese Webpage Classification with?Multi-i Chinese webpages. The proposed PageCNN models are compared with two modified traditional machine learning models, the modified TextCNN model, and three state-of-the-art deep learning based multi-label text classification models. The experimental results demonstrate that the PageCNN models perform b
38#
發(fā)表于 2025-3-28 06:08:11 | 只看該作者
39#
發(fā)表于 2025-3-28 09:05:23 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:59 | 只看該作者
,Enhancing Collaborative Features with?Knowledge Graph for?Recommendation,ant semantic information in KG, we design an attribute aggregation scheme and an inference mechanism for GNN which directly propagates further attributes and inference information to the central node. Extensive experiments conducted on three public datasets demonstrate the superior performance of CK
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛教| 乐业县| 德阳市| 温宿县| 鹰潭市| 承德市| 凯里市| 攀枝花市| 定结县| 历史| 苏尼特左旗| 香港 | 阿克苏市| 墨脱县| 陆丰市| 施秉县| 乐都县| 泰宁县| 临海市| 林甸县| 景德镇市| 上高县| 高淳县| 佛教| 新密市| 上杭县| 龙游县| 盐边县| 鄂尔多斯市| 津南区| 康乐县| 扎赉特旗| 江孜县| 临安市| 汝州市| 凌云县| 遵义县| 剑河县| 城固县| 合水县| 沙坪坝区|