找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Mining; International Confer Zhiguo Gong,Xiangfeng Luo,Fu Lee Wang Conference proceedings 2011 Springer-Verlag

[復(fù)制鏈接]
樓主: obsess
41#
發(fā)表于 2025-3-28 17:43:57 | 只看該作者
42#
發(fā)表于 2025-3-28 22:03:18 | 只看該作者
Redundant Feature Elimination by Using Approximate Markov Blanket Based on Discriminative Contributiperformance of classifiers. There are previous works to handle this problem by using pair-wise feature similarities, which do not consider discriminative contribution of each feature by utilizing the label information. Here we define an Approximate Markov Blanket (AMB) based on the metric of DIScrim
43#
發(fā)表于 2025-3-28 23:34:38 | 只看該作者
Redundant Feature Elimination by Using Approximate Markov Blanket Based on Discriminative Contributiperformance of classifiers. There are previous works to handle this problem by using pair-wise feature similarities, which do not consider discriminative contribution of each feature by utilizing the label information. Here we define an Approximate Markov Blanket (AMB) based on the metric of DIScrim
44#
發(fā)表于 2025-3-29 06:44:53 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:31:32 | 只看該作者
Text Clustering Based on LSA-HGSOMr space model (VSM) of term weight by using the theory of LSA, then semantic relation is included in the vector space model. Both theory analysis and experimental results confirm that LSA-HGSOM method decreases the number of vector, and enhances the efficiency and precision of text clustering.
47#
發(fā)表于 2025-3-29 15:40:25 | 只看該作者
Text Clustering Based on LSA-HGSOMr space model (VSM) of term weight by using the theory of LSA, then semantic relation is included in the vector space model. Both theory analysis and experimental results confirm that LSA-HGSOM method decreases the number of vector, and enhances the efficiency and precision of text clustering.
48#
發(fā)表于 2025-3-29 23:37:57 | 只看該作者
An Indent Shape Based Approach for Web Lists Mining the documents can be recognized, from which the lists of the target Web page can be extracted. Extensive experiments show that our approach achieves better performance and efficiency compared with existing approaches.
49#
發(fā)表于 2025-3-30 00:36:46 | 只看該作者
An Indent Shape Based Approach for Web Lists Mining the documents can be recognized, from which the lists of the target Web page can be extracted. Extensive experiments show that our approach achieves better performance and efficiency compared with existing approaches.
50#
發(fā)表于 2025-3-30 04:12:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韩城市| 荥经县| 山丹县| 云梦县| 博兴县| 宜兴市| 东乡族自治县| 元氏县| 株洲市| 扎囊县| 成安县| 柳林县| 宁安市| 鹤岗市| 汾西县| 辽宁省| 河津市| 天津市| 叶城县| 绥芬河市| 阿瓦提县| 沁阳市| 锡林郭勒盟| 漳平市| 祁门县| 安徽省| 芮城县| 盐亭县| 偃师市| 靖安县| 安塞县| 新郑市| 灵武市| 广州市| 漳平市| 增城市| 福海县| 永新县| 延安市| 大洼县| 济源市|