找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Applications; 20th International C Long Yuan,Shiyu Yang,Xiang Zhao Conference proceedings 2023 The Editor(s) (i

[復制鏈接]
樓主: encroach
41#
發(fā)表于 2025-3-28 18:20:43 | 只看該作者
42#
發(fā)表于 2025-3-28 20:31:24 | 只看該作者
43#
發(fā)表于 2025-3-28 23:44:11 | 只看該作者
X-ray Prohibited Items Recognition Based on Improved YOLOv5 problem of overlapping occlusion of multi-scale contraband. Experimental results in the real X-ray prohibited items dataset demonstrate that our model outperforms state-of-the-art methods in terms of detection accuracy.
44#
發(fā)表于 2025-3-29 04:59:21 | 只看該作者
45#
發(fā)表于 2025-3-29 11:07:48 | 只看該作者
Temporal Convolution and Multi-Attention Jointly Enhanced Electricity Load Forecastingssign different weight values to each timestep. We validate the effectiveness of our method using three real datasets. The results show that our model performs excellent results compared to traditional deep learning models.
46#
發(fā)表于 2025-3-29 13:52:11 | 只看該作者
Temporal Convolution and Multi-Attention Jointly Enhanced Electricity Load Forecastingssign different weight values to each timestep. We validate the effectiveness of our method using three real datasets. The results show that our model performs excellent results compared to traditional deep learning models.
47#
發(fā)表于 2025-3-29 17:55:25 | 只看該作者
Rule-Enhanced Evolutional Dual Graph Convolutional Network for?Temporal Knowledge Graph Link Predictlutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is benefi
48#
發(fā)表于 2025-3-29 21:08:22 | 只看該作者
Rule-Enhanced Evolutional Dual Graph Convolutional Network for?Temporal Knowledge Graph Link Predictlutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is benefi
49#
發(fā)表于 2025-3-30 03:27:47 | 只看該作者
DINE: Dynamic Information Network Embedding for?Social Recommendation users and items simultaneously and integrate the representations in dynamic and static information networks. In addition, the multi-head self-attention mechanism is employed to model the evolution patterns of dynamic information networks from multiple perspectives. We conduct extensive experiments
50#
發(fā)表于 2025-3-30 05:26:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
虎林市| 霍山县| 沭阳县| 博白县| 息烽县| 康平县| 高平市| 南靖县| 黄梅县| 延寿县| 成安县| 柯坪县| 铜梁县| 泰来县| 岚皋县| 武冈市| 林甸县| 平塘县| 黄浦区| 湟源县| 南平市| 阜平县| 平武县| 文安县| 保靖县| 江城| 普兰店市| 深水埗区| 定安县| 满城县| 太康县| 科技| 霸州市| 普兰店市| 桃江县| 咸阳市| 神池县| 沂南县| 泸水县| 河东区| 万州区|