找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Applications; 20th International C Long Yuan,Shiyu Yang,Xiang Zhao Conference proceedings 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: encroach
41#
發(fā)表于 2025-3-28 18:20:43 | 只看該作者
42#
發(fā)表于 2025-3-28 20:31:24 | 只看該作者
43#
發(fā)表于 2025-3-28 23:44:11 | 只看該作者
X-ray Prohibited Items Recognition Based on Improved YOLOv5 problem of overlapping occlusion of multi-scale contraband. Experimental results in the real X-ray prohibited items dataset demonstrate that our model outperforms state-of-the-art methods in terms of detection accuracy.
44#
發(fā)表于 2025-3-29 04:59:21 | 只看該作者
45#
發(fā)表于 2025-3-29 11:07:48 | 只看該作者
Temporal Convolution and Multi-Attention Jointly Enhanced Electricity Load Forecastingssign different weight values to each timestep. We validate the effectiveness of our method using three real datasets. The results show that our model performs excellent results compared to traditional deep learning models.
46#
發(fā)表于 2025-3-29 13:52:11 | 只看該作者
Temporal Convolution and Multi-Attention Jointly Enhanced Electricity Load Forecastingssign different weight values to each timestep. We validate the effectiveness of our method using three real datasets. The results show that our model performs excellent results compared to traditional deep learning models.
47#
發(fā)表于 2025-3-29 17:55:25 | 只看該作者
Rule-Enhanced Evolutional Dual Graph Convolutional Network for?Temporal Knowledge Graph Link Predictlutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is benefi
48#
發(fā)表于 2025-3-29 21:08:22 | 只看該作者
Rule-Enhanced Evolutional Dual Graph Convolutional Network for?Temporal Knowledge Graph Link Predictlutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is benefi
49#
發(fā)表于 2025-3-30 03:27:47 | 只看該作者
DINE: Dynamic Information Network Embedding for?Social Recommendation users and items simultaneously and integrate the representations in dynamic and static information networks. In addition, the multi-head self-attention mechanism is employed to model the evolution patterns of dynamic information networks from multiple perspectives. We conduct extensive experiments
50#
發(fā)表于 2025-3-30 05:26:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金堂县| 湘潭县| 海原县| 石景山区| 安塞县| 彭泽县| 宜兰市| 磐石市| 深州市| 武乡县| 青岛市| 资阳市| 罗平县| 沁阳市| 仁寿县| 岳池县| 普兰县| 柳河县| 康乐县| 宜兰县| 通山县| 台州市| 大荔县| 肃宁县| 法库县| 隆德县| 敦化市| 洪江市| 舞钢市| 平顶山市| 丹巴县| 天长市| 广元市| 佛教| 南昌市| 西贡区| 商洛市| 运城市| 马关县| 阿克| 莱阳市|