找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets and Statistics; Anestis Antoniadis,Georges Oppenheim Book 1995 Springer-Verlag New York 1995 Gaussian process.Hypothese.Markov ra

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:25:12 | 只看該作者
52#
發(fā)表于 2025-3-30 16:20:19 | 只看該作者
53#
發(fā)表于 2025-3-30 17:39:14 | 只看該作者
Translation-Invariant De-Noising,r example, Gibbs phenomena in the neighborhood of discontinuities—to the lack of translation invariance of the wavelet basis. One method to suppress such artifacts, termed “cycle spinning” by Coifman, is to “average out” the translation dependence. For a range of shifts, one shifts the data (right o
54#
發(fā)表于 2025-3-30 22:20:54 | 只看該作者
Estimating Wavelet Coefficients,studied for three types of observation design: the regular design, when the observations.(x.) are taken on the regular grid . the case of jittered regular grid, when it is only known that for all . the random design case: .are independent and identically distributed random variables on [0,1]. We sho
55#
發(fā)表于 2025-3-31 02:17:57 | 只看該作者
56#
發(fā)表于 2025-3-31 05:11:04 | 只看該作者
Nonparametric Supervised Image Segmentation by Energy Minimization using Wavelets,jected onto a wavelet basis. We assume a white noise model on the observed image. The aim of this paper is to study the asymptotic behavior of non-parametric estimators of the boundary when the number of pixels grows to infinity.
57#
發(fā)表于 2025-3-31 11:03:27 | 只看該作者
Nonparametric Supervised Image Segmentation by Energy Minimization using Wavelets,jected onto a wavelet basis. We assume a white noise model on the observed image. The aim of this paper is to study the asymptotic behavior of non-parametric estimators of the boundary when the number of pixels grows to infinity.
58#
發(fā)表于 2025-3-31 16:33:12 | 只看該作者
59#
發(fā)表于 2025-3-31 19:19:51 | 只看該作者
On the Statistics of Best Bases Criteria,e criteria for best bases representation are random variables. The search may thus be very sensitive to noise. In this paper, we characterize the asymptotic statistics of the criteria to gain insight which can in turn, be used to improve on the performance of the analysis. By way of a well-known inf
60#
發(fā)表于 2025-4-1 01:19:26 | 只看該作者
Discretized Wavelet Density Estimators for Continuous Time Stochastic Processes,ch are satisfied for rather general diffusion processes, the. . error of the linear wavelet estimator of. constructed from the observation . converges with the rate . when . In this work we study two discretized versions of this estimator, constructed from the dicrete observations . We show that the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵川县| 都江堰市| 保靖县| 涟水县| 新田县| 准格尔旗| 错那县| 浑源县| 孟州市| 普洱| 蚌埠市| 安泽县| 乌海市| 大港区| 张家界市| 贵德县| 金湖县| 潜山县| 周至县| 五河县| 郑州市| 陆丰市| 蒲江县| 怀柔区| 常熟市| 鄂托克前旗| 蒙山县| 黑龙江省| 孝昌县| 陵川县| 清流县| 镇巴县| 大埔区| 博客| 张家港市| 个旧市| 镇远县| 大渡口区| 云龙县| 澄城县| 桑日县|