找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Their Applications; Lokenath Debnath Textbook 20021st edition Springer Science+Business Media New York 2002 Fourier

[復(fù)制鏈接]
樓主: Coenzyme
31#
發(fā)表于 2025-3-26 22:16:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:28:27 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:29 | 只看該作者
The Wavelet Transform and Its Basic Properties,y at low frequencies. These difficulties led to a problem of finding a suitable reconstruction formula. In order to resolve these difficulties, Morlet first made an attempt to use analytic signals .(.) = .(.) exp{.(.)} and then introduced the wavelet . defined by its Fourier transform
34#
發(fā)表于 2025-3-27 11:12:10 | 只看該作者
35#
發(fā)表于 2025-3-27 17:17:57 | 只看該作者
36#
發(fā)表于 2025-3-27 21:22:16 | 只看該作者
Fourier Transforms and Their Applications,ry differential equations, partial differential equations, and integral equations are discussed. Included are some examples of applications of multiple Fourier transforms to important partial differential equations and Green’s functions.
37#
發(fā)表于 2025-3-28 00:07:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:59:13 | 只看該作者
,Newland’s Harmonic Wavelets,ts Fourier transform .(.) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis.
39#
發(fā)表于 2025-3-28 07:18:19 | 只看該作者
,Newland’s Harmonic Wavelets,ts Fourier transform .(.) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis.
40#
發(fā)表于 2025-3-28 13:50:19 | 只看該作者
on, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彩票| 右玉县| 察雅县| 长白| 积石山| 牙克石市| 若尔盖县| 汶上县| 进贤县| 金华市| 务川| 郁南县| 响水县| 白沙| 永丰县| 乌海市| 冀州市| 拉孜县| 宁武县| 仲巴县| 潮州市| 沈丘县| 崇州市| 刚察县| 隆林| 望城县| 富宁县| 上蔡县| 洞头县| 集贤县| 崇州市| 华容县| 道孚县| 长岭县| 攀枝花市| 青岛市| 萨嘎县| 海南省| 江孜县| 沐川县| 台湾省|