找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Localization Operators; M. W. Wong Book 2002 Springer Basel AG 2002 functional analysis.harmonic analysis.mathemati

[復(fù)制鏈接]
樓主: 突然
11#
發(fā)表于 2025-3-23 13:35:08 | 只看該作者
Adjoints,ole since its appearance in Example 5.7. In this chapter we show that it is an object of interest in its own right. We are particularly interested in the adjoints of wavelet transforms for left regular representations of unimodular groups.
12#
發(fā)表于 2025-3-23 16:53:52 | 只看該作者
Adjoints,ole since its appearance in Example 5.7. In this chapter we show that it is an object of interest in its own right. We are particularly interested in the adjoints of wavelet transforms for left regular representations of unimodular groups.
13#
發(fā)表于 2025-3-23 21:34:33 | 只看該作者
Localization Operators,bert space . In this chapter we introduce a class of bounded linear operators .. : . → ., which are related to the wavelet transform .. : . → ..(.) defined by (7.1), for all . in .. (.),1 ≤ . ≤ ∞. We first tackle this problem for . in L.(.) or ..(.). In the case when . = 1, we do not need the assump
14#
發(fā)表于 2025-3-24 01:07:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:53 | 只看該作者
,,, Norm Inequalities, 1 ≤ , ≤ ∞,reducible and square-integrable representation of a locally compact and Hausdorff group . on a Hilbert space . is in the Schatten-von Neumann class .., 1 ≤ . ≤ ∞. When . = 1, the irreducibility of the representation π: . → .(.) can be dispensed with.
16#
發(fā)表于 2025-3-24 06:41:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:15 | 只看該作者
18#
發(fā)表于 2025-3-24 17:39:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:06 | 只看該作者
Two-Wavelet Theory,ion π: . → . of . on . In this chapter we introduce the notion of a localization operator ..: . → ., which is defined in terms of a symbol . in ... and two admissible wavelets . and . for the square-integrable representation π: . →. of . on .. It is proved in this chapter that ..: . → . is in .. and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 垦利县| 乐清市| 民丰县| 赤壁市| 泰宁县| 南和县| 莫力| 南华县| 巴彦淖尔市| 建瓯市| 贞丰县| 龙门县| 闸北区| 黎平县| 淅川县| 高淳县| 西平县| 黎城县| 临朐县| 安新县| 南丰县| 安塞县| 政和县| 措勤县| 拜泉县| 渑池县| 定西市| 南京市| 漳平市| 夏津县| 大埔区| 商都县| 吉水县| 长宁县| 沧源| 呼玛县| 靖宇县| 孙吴县| 邵武市| 德化县|