找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Applications in Chemical Engineering; Rodolphe L. Motard,Babu Joseph Book 1994 Springer Science+Business Media New York 1994 algor

[復制鏈接]
樓主: Wilder
51#
發(fā)表于 2025-3-30 11:05:31 | 只看該作者
Trend Analysis Using the Frazier-Jawerth Transform,or its on-line implementation. Algorithms for FJ decomposition and reconstruction of 1-D signals are also included. FJT bears close resemblance to the wavelet transform technique which is enjoying much attention lately (Science, August 1990). The theory of frames has been shown to subsume the FJ and
52#
發(fā)表于 2025-3-30 16:03:57 | 只看該作者
53#
發(fā)表于 2025-3-30 19:57:46 | 只看該作者
Process Signal Features Analysis,concepts are defined to form a theoretical framework of this method. Several possible applications are discussed. This approach offers the potential for building new intelligent process signal analysis systems to identifying the process “finger prints”, i.e. the hidden time-frequency structure in si
54#
發(fā)表于 2025-3-31 00:09:07 | 只看該作者
Use of Wavelets for Numerical Solution of Differential Equations,imate a functions not by cancellation, but through placement of the right wavelets at appropriate locations. The multi-resolution analysis (MRA) properties of wavelets render them attractive candidates for functions in terms of which numerical solutions of differential equations can be represented.
55#
發(fā)表于 2025-3-31 03:06:34 | 只看該作者
Learning at Multiple Resolutions: Wavelets as Basis Functions in Artificial Neural Networks, and Inescribe the application of wavelets for multi-resolution learning in artificial neural networks and inductive decision trees, and show how wavelets may provide a unifying framework for various supervised learning techniques. A . is an artificial neural network with activation functions derived from
56#
發(fā)表于 2025-3-31 07:37:28 | 只看該作者
Application of Wavelets in Process Control,velets are discussed in the context of control applications. We also discuss various control problems where wavelets could be particularly advantageous. We illustrate the benefits of wavelet formulations by presenting wavelet domain approaches to basis reduction and frequency domain tuning in model
57#
發(fā)表于 2025-3-31 12:43:35 | 只看該作者
58#
發(fā)表于 2025-3-31 17:23:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天津市| 巴楚县| 三原县| 麻栗坡县| 墨玉县| 岳阳市| 大港区| 靖远县| 循化| 岢岚县| 工布江达县| 衡南县| 通许县| 甘孜| 龙门县| 桐城市| 丰县| 龙井市| 新竹县| 荣昌县| 荆州市| 讷河市| 宁晋县| 清远市| 延安市| 海林市| 巴彦淖尔市| 穆棱市| 大方县| 大冶市| 东海县| 内丘县| 葵青区| 台北县| 民勤县| 驻马店市| 弥勒县| 西乌| 上虞市| 镇坪县| 南部县|