找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Waveform Analysis of Sound; Mikio Tohyama Book 2015 Springer Japan 2015 Auditory Sensation.Auditory Sound.Clustered Line Spectrum Modeling

[復(fù)制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 11:32:29 | 只看該作者
12#
發(fā)表于 2025-3-23 14:18:18 | 只看該作者
13#
發(fā)表于 2025-3-23 19:46:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:10:38 | 只看該作者
Temporal and Spectral Characteristics of Discrete Sequence,pic structures, whereas the frame-wise spectral properties can be interpreted as related to the time-dependent fine structure of a sequence. The local behavior of phase spectral records or group delay is crucial in the construction of the envelopes. Inspired by the methods used for group delay, tria
15#
發(fā)表于 2025-3-24 03:50:48 | 只看該作者
16#
發(fā)表于 2025-3-24 07:13:20 | 只看該作者
Modulation and Periodic Properties of Temporal Envelope,ulates the modulation index, which characterizes the spectral magnitudes of the envelope frequencies normalized. Speech intelligibility is estimated by the modulation index of the narrow-band envelopes. An intriguing question is whether the magnitude or phase spectrum is dominant in synthesizing int
17#
發(fā)表于 2025-3-24 13:22:00 | 只看該作者
18#
發(fā)表于 2025-3-24 18:42:04 | 只看該作者
Sampling Theorem and Discrete Fourier Transform,press a periodic sequence using sampled spectral sequences in accordance with the sampling theorem and discrete Fourier transformation. The pair of time and spectral sequences forms a discrete Fourier transform (DFT) pair. The sampling theorem gives conditions and formulation for sampling a continuo
19#
發(fā)表于 2025-3-24 20:39:35 | 只看該作者
Sinusoidal Representation of Sequence,dal sequences. A compound sinusoidal sequence can be identified by repeating spectral peak selection from the interpolated spectral sequence iteratively independent of the observation length, provided the sinusoidal components are time independent. The frame-wise approach of spectral peak selection
20#
發(fā)表于 2025-3-25 00:54:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 06:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 吉林省| 和田县| 拜城县| 大足县| 大石桥市| 旅游| 乾安县| 唐河县| 清新县| 昭平县| 吴川市| 成都市| 常宁市| 隆回县| 辽宁省| 大庆市| 通榆县| 专栏| 泰安市| 溧阳市| 石泉县| 江阴市| 永善县| 垫江县| 中卫市| 轮台县| 西城区| 皋兰县| 法库县| 金昌市| 沙雅县| 遵义县| 静安区| 永州市| 通海县| 鹤峰县| 新巴尔虎左旗| 凌源市| 芦山县| 突泉县|