找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wave Scattering from Rough Surfaces; Alexander Voronovich Book 1999Latest edition Springer-Verlag Berlin Heidelberg 1999 Helium-Atom-Streu

[復(fù)制鏈接]
樓主: NO610
41#
發(fā)表于 2025-3-28 18:24:21 | 只看該作者
Introduction,by jumps. Since wave motion is characteristic for all continua often possessing well defined boundaries, then, generally speaking, these scattering processes must be encountered nearly as often as waves themselves. In fact, wave scattering at rough surfaces is of importance in various physical situa
42#
發(fā)表于 2025-3-28 21:19:26 | 只看該作者
Introduction,by jumps. Since wave motion is characteristic for all continua often possessing well defined boundaries, then, generally speaking, these scattering processes must be encountered nearly as often as waves themselves. In fact, wave scattering at rough surfaces is of importance in various physical situa
43#
發(fā)表于 2025-3-28 23:37:19 | 只看該作者
44#
發(fā)表于 2025-3-29 06:09:01 | 只看該作者
Scattering Amplitude and Its Properties,er divides two homogeneous half-spaces or bounds only one of them. The waves propagating in these media can be scalar or multicomponent (possessing polarization). The most natural language describing scattering processes is an amplitude of scattering (SA) the plane waves into each other. Using SA in
45#
發(fā)表于 2025-3-29 07:44:23 | 只看該作者
46#
發(fā)表于 2025-3-29 15:07:02 | 只看該作者
47#
發(fā)表于 2025-3-29 16:46:00 | 只看該作者
Small Peturbation Method,ds were developed. Of the most significance among these methods are the small perturbation method (SPM) and the quasi-classical approximation (or geometrical optics approximation). These two approaches can be referred to as “classical”. In the present chapter we consider the former.
48#
發(fā)表于 2025-3-29 21:40:25 | 只看該作者
49#
發(fā)表于 2025-3-30 01:02:34 | 只看該作者
50#
發(fā)表于 2025-3-30 06:32:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松江区| 和平县| 绵竹市| 兰州市| 睢宁县| 都昌县| 祁阳县| 连城县| 苗栗市| 巴里| 西昌市| 周至县| 韶关市| 青州市| 娄烦县| 洪洞县| 广汉市| 柯坪县| 团风县| 石景山区| 花莲市| 双桥区| 翁牛特旗| 万源市| 垦利县| 普宁市| 巴青县| 都昌县| 梧州市| 漳平市| 通化县| 慈利县| 康保县| 青阳县| 西华县| 蓝田县| 云安县| 化隆| 蒲城县| 高陵县| 白沙|