找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wave Packet Analysis of Feynman Path Integrals; Fabio Nicola,S. Ivan Trapasso Book 2022 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-27 00:58:13 | 只看該作者
32#
發(fā)表于 2025-3-27 03:39:19 | 只看該作者
33#
發(fā)表于 2025-3-27 06:58:52 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:10 | 只看該作者
Semiclassical Gabor AnalysisThe purpose of this chapter is to recast in the spirit of semiclassical analysis some aspects of Gabor analysis that have been discussed in the previous ones, in order to take into account the presence of a small parameter (inspired by the Planck constant) and its asymptotic behaviour.
35#
發(fā)表于 2025-3-27 16:16:26 | 只看該作者
Pointwise Convergence of the Integral KernelsIn this chapter we address the problem of the pointwise convergence of the integral kernels of the Feynman-Trotter parametrices for the Schr?dinger equation with a quadratic Hamiltonian perturbed by a pseudodifferential potential in suitable low regularity classes.
36#
發(fā)表于 2025-3-27 19:19:08 | 只看該作者
37#
發(fā)表于 2025-3-28 00:46:16 | 只看該作者
Convergence in , for Potentials in Kato-Sobolev SpacesThe goal of this chapter is to derive convergence results in the . operator norm for a standard family of time-slicing approximations introduced by Fujiwara for potentials with at most quadratic growth in low-regularity Kato-Sobolev spaces.
38#
發(fā)表于 2025-3-28 02:46:13 | 只看該作者
39#
發(fā)表于 2025-3-28 06:30:16 | 只看該作者
Fabio Nicola,S. Ivan TrapassoIncludes a self-contained treatment of the background toolkit.Describes a novel approach to the analysis of Feynman path integrals.Provides a detailed exposition of recent advances in mathematical pat
40#
發(fā)表于 2025-3-28 13:51:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如东县| 哈密市| 子长县| 都匀市| 定襄县| 全椒县| 赞皇县| 中宁县| 海阳市| 新乡县| 屏南县| 英山县| 山东| 马龙县| 宁波市| 赣州市| 卢龙县| 水富县| 汪清县| 米林县| 抚顺市| 广饶县| 大城县| 贵定县| 水富县| 基隆市| 休宁县| 青冈县| 饶平县| 治多县| 江都市| 当阳市| 大方县| 聊城市| 凤庆县| 商洛市| 河津市| 崇义县| 中方县| 广宁县| 丘北县|