找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wave Equations in Higher Dimensions; Shi-Hai Dong Book 2011 Springer Science+Business Media B.V. 2011 High dimension quantum theory.Higher

[復(fù)制鏈接]
樓主: grateful
41#
發(fā)表于 2025-3-28 15:53:09 | 只看該作者
42#
發(fā)表于 2025-3-28 19:02:50 | 只看該作者
Dirac Equation in Higher Dimensions total angular momentums for both odd (2.+1) and even 2. cases with the technique of group theory and present the radial equations. As an illustration, the hydrogen-like atoms are discussed by the series method.
43#
發(fā)表于 2025-3-28 23:07:10 | 只看該作者
44#
發(fā)表于 2025-3-29 04:15:48 | 只看該作者
45#
發(fā)表于 2025-3-29 08:23:37 | 只看該作者
Klein-Gordon Equation in Higher Dimensionsn discussed by the different approaches like the large-. expansion approximate method. The purpose of this Chapter is to present the Klein-Gordon equation in arbitrary dimensions and solve the hydrogen-like atom problem.
46#
發(fā)表于 2025-3-29 14:43:02 | 只看該作者
Wavefunction Ansatz Methodg a suitable ansatz to the wavefunction, to analyze the .-dimensional radial Schr?dinger equation with anharmonic potentials such as the sextic potential .(.)=. .+. .+. ., the singular integer power potentials .(.)=. .+. .+. .+. ., the singular fraction power potentials .(.)=. .+. . and others.
47#
發(fā)表于 2025-3-29 17:16:02 | 只看該作者
Wavefunction Ansatz Methodg a suitable ansatz to the wavefunction, to analyze the .-dimensional radial Schr?dinger equation with anharmonic potentials such as the sextic potential .(.)=. .+. .+. ., the singular integer power potentials .(.)=. .+. .+. .+. ., the singular fraction power potentials .(.)=. .+. . and others.
48#
發(fā)表于 2025-3-29 23:38:57 | 只看該作者
49#
發(fā)表于 2025-3-30 02:50:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:05:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿鲁科尔沁旗| 博爱县| 邢台市| 沈阳市| 泸州市| 华蓥市| 五寨县| 桓台县| 大冶市| 庆安县| 荣昌县| 鄢陵县| 石林| 龙门县| 天镇县| 广汉市| 志丹县| 肥西县| 县级市| 丰城市| 息烽县| 广平县| 且末县| 库伦旗| 太仆寺旗| 五常市| 宁波市| 增城市| 新晃| 武乡县| 康保县| 舟山市| 竹山县| 新野县| 彭泽县| 古丈县| 龙里县| 隆尧县| 内丘县| 万山特区| 西乡县|