找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Water Waves and Ship Hydrodynamics; An Introduction A.J. Hermans Book 2011Latest edition Springer Science+Business Media B.V. 2011 dredging

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:59:47 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
12#
發(fā)表于 2025-3-23 14:28:05 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
13#
發(fā)表于 2025-3-23 18:45:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:48:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:33 | 只看該作者
18#
發(fā)表于 2025-3-24 17:35:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:07 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
20#
發(fā)表于 2025-3-25 00:08:28 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梁河县| 三门县| 固始县| 武平县| 高要市| 桓仁| 长岭县| 秀山| 皮山县| 滦南县| 双柏县| 南通市| 玉溪市| 怀化市| 吉水县| 商南县| 竹溪县| 赤城县| 来宾市| 建昌县| 旬邑县| 睢宁县| 惠来县| 康乐县| 深州市| 青海省| 广汉市| 柳林县| 五莲县| 青川县| 玉溪市| 玉树县| 阿勒泰市| 桃园县| 揭东县| 柞水县| 曲靖市| 五峰| 比如县| 麦盖提县| 焉耆|