找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Water Waves and Ship Hydrodynamics; An Introduction A.J. Hermans Book 2011Latest edition Springer Science+Business Media B.V. 2011 dredging

[復制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:59:47 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
12#
發(fā)表于 2025-3-23 14:28:05 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
13#
發(fā)表于 2025-3-23 18:45:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:48:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:33 | 只看該作者
18#
發(fā)表于 2025-3-24 17:35:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:07 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
20#
發(fā)表于 2025-3-25 00:08:28 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
牡丹江市| 博乐市| 溧水县| 湘潭市| 育儿| 佛山市| 西和县| 阿图什市| 鄂州市| 北安市| 平阳县| 栖霞市| 台州市| 体育| 海晏县| 股票| 怀远县| 北票市| 巴中市| 扎囊县| 伊金霍洛旗| 沙洋县| 都兰县| 盐山县| 太湖县| 融水| 永定县| 乡城县| 巴里| 台南县| 林甸县| 西峡县| 临湘市| 双流县| 乌兰县| 牟定县| 葵青区| 花莲市| 岑溪市| 乐山市| 天祝|