找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Was k?nnen wir wissen?; Mit Physik bis zur G Josef Honerkamp Book 2013 Springer-Verlag GmbH Berlin Heidelberg 2013 Evolution.Kritik.Neurowi

[復(fù)制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:39:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:24:51 | 只看該作者
Josef Honerkampetermined and classified. Some conclusions are drawn concerning the properties of the corresponding covariant equations of motion and a group theoretical definition of an elementary particle in interaction with such a field is proposed (The special case of zero field reduces of course to the known r
13#
發(fā)表于 2025-3-23 19:50:34 | 只看該作者
Josef Honerkampons . and . to be eigenfunctions for the unperturbed Hamiltonian, which are basis functions for irreducible representations of the group of Schr?dinger’s equation. Here . transforms according to an irreducible representation of the group of Schr?dinger’s equation. This product involves the direct pr
14#
發(fā)表于 2025-3-23 23:08:57 | 只看該作者
Josef Honerkamprepresentations. The results are applied to chemical reaction theory, and to the theory of the Jahn–Teller effect. Selection rules are illustrated for linear and circular dichroism. Finally, the polyhedral Euler theorem is introduced and applied to valence-bond theory for clusters.
15#
發(fā)表于 2025-3-24 03:15:03 | 只看該作者
Josef Honerkamprepresentations. The results are applied to chemical reaction theory, and to the theory of?the Jahn–Teller effect. Selection rules?are illustrated for linear and circular dichroism. Finally, the polyhedral Euler theorem?is introduced and applied to valence-bond theory for clusters.
16#
發(fā)表于 2025-3-24 09:48:47 | 只看該作者
17#
發(fā)表于 2025-3-24 14:24:51 | 只看該作者
Josef Honerkampons in the Hilbert space of quantum mechanics. The second reason for dealing with these transformations is the fact that certain operators encountered in quantum mechanics may be interpreted as representatives of underlying geometric transformations in classical phase space. This applies in particul
18#
發(fā)表于 2025-3-24 18:34:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清水县| 太和县| 晋州市| 扶沟县| 锦屏县| 鄂尔多斯市| 克什克腾旗| 益阳市| 阳东县| 云梦县| 乐清市| 普陀区| 临漳县| 剑阁县| 景洪市| 金昌市| 封丘县| 湘潭县| 浦东新区| 宝应县| 临洮县| 剑河县| 交城县| 镇巴县| 宁波市| 新营市| 新野县| 锦屏县| 东丽区| 西林县| 长垣县| 福贡县| 双牌县| 和平区| 康马县| 阿勒泰市| 丰台区| 金寨县| 铁岭市| 九台市| 囊谦县|