找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Walsh Series and Transforms; Theory and Applicati B. Golubov,A. Efimov,V. Skvortsov Book 1991 Springer Science+Business Media Dordrecht 199

[復制鏈接]
樓主: FETUS
41#
發(fā)表于 2025-3-28 15:45:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:05:45 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
44#
發(fā)表于 2025-3-29 06:34:53 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
45#
發(fā)表于 2025-3-29 08:06:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:39 | 只看該作者
Generalized Multiplicative Transforms,Let 1 ≤ . < ∞. A complex valued function .(.) is said to belong to .(0, ∞) if ∫.|.(.)|. > ∞. The norm of .(.) in the space .(0, ∞) will be denoted by ∥.∥. and is defined by
47#
發(fā)表于 2025-3-29 16:21:48 | 只看該作者
48#
發(fā)表于 2025-3-29 22:36:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:43:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:21 | 只看該作者
Lacunary Subsystems of the Walsh System,The Rademacher system, {.(.)} = {., . = 0,1,…, which was used to define the Walsh system (see §1.1), is a typical example of what is called a . of the Walsh system. We shall study these systems in the next several sections.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:47
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武平县| 财经| 平顺县| 湟源县| 安国市| 炉霍县| 玛曲县| 巴林左旗| 项城市| 太保市| 鄂伦春自治旗| 将乐县| 西华县| 法库县| 柯坪县| 本溪| 雷山县| 茂名市| 监利县| 阳西县| 通山县| 塔河县| 马边| 化州市| 清涧县| 罗江县| 永修县| 民勤县| 什邡市| 邵武市| 镇宁| 溧水县| 乌兰县| 新乡市| 扎赉特旗| 油尖旺区| 普宁市| 黎城县| 五华县| 和林格尔县| 新巴尔虎左旗|