找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Walsh Series and Transforms; Theory and Applicati B. Golubov,A. Efimov,V. Skvortsov Book 1991 Springer Science+Business Media Dordrecht 199

[復(fù)制鏈接]
樓主: FETUS
41#
發(fā)表于 2025-3-28 15:45:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:05:45 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
44#
發(fā)表于 2025-3-29 06:34:53 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
45#
發(fā)表于 2025-3-29 08:06:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:39 | 只看該作者
Generalized Multiplicative Transforms,Let 1 ≤ . < ∞. A complex valued function .(.) is said to belong to .(0, ∞) if ∫.|.(.)|. > ∞. The norm of .(.) in the space .(0, ∞) will be denoted by ∥.∥. and is defined by
47#
發(fā)表于 2025-3-29 16:21:48 | 只看該作者
48#
發(fā)表于 2025-3-29 22:36:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:43:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:21 | 只看該作者
Lacunary Subsystems of the Walsh System,The Rademacher system, {.(.)} = {., . = 0,1,…, which was used to define the Walsh system (see §1.1), is a typical example of what is called a . of the Walsh system. We shall study these systems in the next several sections.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特左旗| 南木林县| 洞头县| 太仓市| 黄浦区| 台北县| 五华县| 商洛市| 宕昌县| 寿宁县| 高阳县| 读书| 田阳县| 淮阳县| 抚顺市| 桃园县| 北辰区| 英德市| 和林格尔县| 磐石市| 鄯善县| 南昌县| 陕西省| 宣汉县| 金湖县| 荔波县| 江源县| 通山县| 关岭| 台安县| 高淳县| 衡东县| 顺平县| 乐亭县| 岱山县| 棋牌| 朝阳区| 辛集市| 土默特右旗| 临澧县| 长汀县|