找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 4th International Wo Md. Saidur Rahman,Satoshi Fujita Conference proceedings 2010 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 難免
21#
發(fā)表于 2025-3-25 05:59:56 | 只看該作者
A Global ,-Level Crossing Reduction Algorithmossing minimizations, which are still .-hard..We introduce a global crossing reduction, which at any particular time captures all crossings, especially for long edges. Our approach is based on the sifting technique and improves the level-by-level heuristics in the hierarchic framework by a further r
22#
發(fā)表于 2025-3-25 10:24:32 | 只看該作者
Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygonalled “computing instead of storing”, we can design a naive quadratic-time algorithm for the problem using only constant work space, i.e., .(log.) bits in total for the work space, where . is the number of nodes in the tree. Then, another technique “controlled recursion” improves the time bound to .
23#
發(fā)表于 2025-3-25 12:40:49 | 只看該作者
24#
發(fā)表于 2025-3-25 15:59:49 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:39 | 只看該作者
26#
發(fā)表于 2025-3-26 03:51:17 | 只看該作者
Small Grid Drawings of Planar Graphs with Balanced Bipartitionrsection. It has been known that every planar graph . of . vertices has a grid drawing on an (.???2)×(.???2) integer grid and such a drawing can be found in linear time. In this paper we show that if a planar graph . has a balanced bipartition then . has a grid drawing with small grid area. More pre
27#
發(fā)表于 2025-3-26 07:39:26 | 只看該作者
Acyclically 3-Colorable Planar Graphsmaximum degree 4 and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that is acyclically 3-colorable. Finally, we characterize the series-parallel graphs such th
28#
發(fā)表于 2025-3-26 08:41:37 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:32 | 只看該作者
30#
發(fā)表于 2025-3-26 18:55:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙井市| 武邑县| 天全县| 根河市| 开原市| 北安市| 内乡县| 五台县| 永吉县| 邓州市| 金堂县| 维西| 宁远县| 山丹县| 长葛市| 康定县| 兴海县| 工布江达县| 桑日县| 齐齐哈尔市| 神农架林区| 平潭县| 蚌埠市| 库伦旗| 九台市| 贡山| 新绛县| 勃利县| 晴隆县| 资溪县| 霍林郭勒市| 沁源县| 海南省| 崇阳县| 张家港市| 城步| 陵水| 巴彦淖尔市| 安图县| 西华县| 凌源市|