找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal K?í?ek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma

[復制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 12:37:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:55 | 只看該作者
,Fermat’s Little Theorem, Pseudoprimes, and Superpseudoprimes,978-1-4614-7397-8
13#
發(fā)表于 2025-3-23 19:34:17 | 只看該作者
Euclidean Construction of the Regular Heptadecagon,978-3-642-60521-5
14#
發(fā)表于 2025-3-24 02:01:29 | 只看該作者
Book 2001acting the attention of amateur and professional mathematicians for over 350 years. This book was written in honor of the 400th anniversary of his birth and is based on a series of lectures given by the authors. The purpose of this book is to provide readers with an overview of the many properties o
15#
發(fā)表于 2025-3-24 04:28:43 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:48 | 只看該作者
Matthew Suarez,Frederic Parke,Filipe Castro [Williams, 1988]. In 1878, F. Proth stated the following theorem (see [Proth, 1878b, 1978c] and see [Robinson, 1957b], [Sierpiński, 1964a] for proofs of this theorem), which can be applied to verify easily the primality of divisors of Fermat numbers for . < 2. (see [Robinson, 1957a] and [Robinson, 1958]; also compare with Suyama’s Theorem 4.22).
18#
發(fā)表于 2025-3-24 16:36:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:32:59 | 只看該作者
The Minerals, Metals & Materials Series7 equal parts by geometric means (see Figure 17.3 and (17.3)). Here he essentially used the fact that 17 is a Fermat prime. This fundamental discovery is presented on the base of his statue in Brunswick (in German .), where he was born (see Figure 17.4).
20#
發(fā)表于 2025-3-25 00:17:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
修文县| 西藏| 右玉县| 阳泉市| 康乐县| 连平县| 长葛市| 合江县| 白银市| 伊宁县| 黄平县| 若尔盖县| 团风县| 浦江县| 确山县| 泰顺县| 怀来县| 前郭尔| 灵宝市| 台东市| 泸溪县| 平江县| 新宾| 铁力市| 宜川县| 德清县| 简阳市| 汝州市| 华阴市| 长汀县| 申扎县| 凤城市| 威远县| 海淀区| 仙居县| 上思县| 张北县| 饶阳县| 石狮市| 荔浦县| 屏边|