找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 13th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2021 The Edi

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:07:25 | 只看該作者
42#
發(fā)表于 2025-3-28 20:01:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:58:19 | 只看該作者
?kobilanzierung und Entscheidungstheorieans. The model describes the most effective strategic behavior between two participants during a battle or in a war. Moreover, we compare the results of the dynamical analysis to Game Theory, considering this conflict as a dynamic game.
44#
發(fā)表于 2025-3-29 05:54:10 | 只看該作者
https://doi.org/10.1007/978-3-642-59994-1cal applications are given. Precisely, the mathematical concept of atomicity (and, particularly, that of minimal atomicity) is extended, based on the non-differentiability of the motion curves associated to the motions of the structural units of a complex system on a fractal manifold.
45#
發(fā)表于 2025-3-29 10:24:06 | 只看該作者
https://doi.org/10.1007/978-3-030-70795-8Non-linear Dynamical Systems; Attractors and Fractals; Neural Synchronisation; Turbulent Systems; Separa
46#
發(fā)表于 2025-3-29 11:46:04 | 只看該作者
47#
發(fā)表于 2025-3-29 18:31:23 | 只看該作者
2213-8684 nd complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences.?.The respective chapters a
48#
發(fā)表于 2025-3-29 23:01:46 | 只看該作者
49#
發(fā)表于 2025-3-29 23:59:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:11:56 | 只看該作者
28. H?mophilie-Symposion Hamburg 1997el known as the Schnakenberg model. With our approach, we obtain conditions on parameters of the system of the chemical reaction model which gives Hopf bifurcation. Using the Lyapunov function we show the stability of Hopf bifurcation. We illustrate the results with a numerical example.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普安县| 富平县| 克山县| 南昌市| 紫阳县| 万安县| 阿勒泰市| 阿拉尔市| 米林县| 平度市| 措美县| 静安区| 大兴区| 壤塘县| 孟津县| 洛浦县| 隆化县| 陆川县| 独山县| 太仆寺旗| 宜兰县| 太原市| 拜泉县| 棋牌| 天镇县| 玉门市| 社会| 徐州市| 屏边| 大宁县| 宿迁市| 抚顺市| 霍林郭勒市| 南江县| 来凤县| 鄄城县| 宁化县| 定远县| 漳州市| 玉龙| 读书|