找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Metric Fixed Point Theory; Applications in Scie Pradip Debnath,Nabanita Konwar,Stojan Radenovi? Book 2021 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Maculate
21#
發(fā)表于 2025-3-25 04:26:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:51:18 | 只看該作者
23#
發(fā)表于 2025-3-25 13:50:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:27:05 | 只看該作者
25#
發(fā)表于 2025-3-25 21:27:31 | 只看該作者
26#
發(fā)表于 2025-3-26 03:32:40 | 只看該作者
27#
發(fā)表于 2025-3-26 05:34:46 | 只看該作者
On Some Fixed Point Results in Various Types of Modular Metric Spaces,action in the sense of Suzuki and to prove some of the consequences obtained as a result of using this structure in fixed point theory. Also, graphical fixed point theorems are obtained as an application of these results. Since the orthogonal .contraction in the sense of Suzuki, which was put forwar
28#
發(fā)表于 2025-3-26 08:55:10 | 只看該作者
29#
發(fā)表于 2025-3-26 13:45:20 | 只看該作者
Some Extragradient Methods for Solving Variational Inequalities Using Bregman Projection and Fixed reflexive Banach spaces. These algorithms are extensions of the prototypes which have been studied extensively in real Hilbert and 2-uniformly convex Banach spaces. We emphasize that there are some applicable examples (most especially in mechanics) which can be modelled as variational inequalities
30#
發(fā)表于 2025-3-26 19:25:51 | 只看該作者
Common Solutions to Variational Inequality Problem via Parallel and Cyclic Hybrid Inertial CQ-Subgrient (PCHICQ-SE) algorithms. Proposed algorithms are applied to find common solutions to the variational inequality problem (CSVIP) in the Hilbert spaces (HSs). Ultimately, numerical experiments are presented here to examine the efficiency of our algorithms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永清县| 饶平县| 马关县| 当雄县| 巴中市| 邻水| 商丘市| 望江县| 山东省| 宜兰县| 英超| 亳州市| 延川县| 汤阴县| 建昌县| 遂宁市| 建德市| 河源市| 多伦县| 汉寿县| 融水| 望都县| 乐清市| 桐柏县| 洛浦县| 故城县| 桃源县| 鱼台县| 长武县| 阿鲁科尔沁旗| 乐至县| 于田县| 永登县| 台湾省| 黎城县| 靖宇县| 德格县| 钟山县| 铅山县| 南郑县| 沙河市|